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Principles and Performance of Solar Energy Thermal Systems: A Web Course by
V.V.Satyamurty

MODULE 12 Lecture No: 14
Solar Flat Plate Collectors

Lecture 14

12.8 TEMPERATURE DISTRIBUTION BETWEEN TUBES AND
THE COLLECTOR EFFICIENCY FACTOR

12.9 TEMPERATURE DISTRIBUTION IN THE FLOW DIRECTION

12.10 HEAT REMOVAL FACTOR AND THE FLOW FACTOR

Lecture 14

12.8 TEMPERATURE DISTRIBUTION BETWEEN TUBES AND THE COLLECTOR
EFFICIENCY FACTOR

The geometry of a repetitive element of a fin and tube absorber is shown in Fig. 12.4. A half fin and
the tube turn out to be the repetitive element. Energy balance on an element of the fin is shown in Fig. 12.5
(a) and (b).
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Fig. 12.4 Repetetive fin and tube element for analysis
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Fig. 12.5 Energy balance on the fin and tube

S is the absorbed energy per unit area on the surface of the collector. The fin shown in Fig. 12.5 (a)
is of length (W-D)/2. An elemental region of width Ax and unit length (perpendicular to the plane of the

paper) in the flow direction is shown in Fig. 12.5 (b). An energy balance on the element yields,

SAX+U AX(T, —=T)+[-ks(dT/dx), |-[-ks(dT/dx),, . ]=0  (12.21)
Dividing throughout by Ax and in the limit x — 0,

(d?T/dx?)=[u, /kS]T T, = (S/U,)] (12.22)

The two boundary conditions are,

(dT/dx),, =0, Tlat x=(W -D)/2]=T, (12.22 a)
Introducing,

m?=U /ks, and w=T-T,—(S/U,) (12.23)
Eq.(11.22) reduces to,

(d2%p/dx?)-m?y =0 (12.24)

The boundary conditions expressed by Eq.(12.22 a) now take the form,
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(dy/dx)_,=0 and y[ at x=(W -D)/2]=T,-T, -(S/U_) (12.244a)
Solution to Eqg.(12.24) is obtained as,
w = C, sinh mx + C, cosh mx (12.25)

Applying the boundary conditions, on evaluating the constants C; and C,

ot S

U, cosh mx (12.26)
1 _ S coshmW —-D)/2 '
b 'a

UL

iy = ~kS(AT/cK) ., -0 =W - D)5 -, 7, -7, J[EOW D)2}
- W -D)F[s-U, (T, -T,]
(12.27)

In Eq.(12.27), F, the fin efficiency given by,

_[tanhm(w - D)/2]

F
m(W - D)/2

(12.28)

The useful gain of the collector also includes the energy collected above the tube region. The energy
gain for this region is,

Oupe = D[S -U (T, - T,)] (12.29)

The useful gain for the collector per unit length in the flow direction is q, is the sum given by Egs.(12.27)

and (12.29)
q, =[W-D)F +DJs-U (T, -T,)] (12.30)

The same useful gain must ultimately be transferred to the fluid and should be equal to,
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In Eq.(12.31), D, is the inside diameter of the tube and hy; is the inside heat transfer coefficient. Cy is the

bond resistance given by,

k,b

C, = (12.32)
y

where ky is the thermal conductivity of the bond, b is the width and y is the thickness. Using Eq.(12.31) in
EQ.(12.30) and on eliminating Ty,

q, =WF [s-u, (T, -T,)] (12.33)

Where, F’ is the collector efficiency factor given by,

E o (12.34)

The collector efficiency factor as explained can be interpreted as the of actual useful gain from the
collector to the heat gain that would be possible if the collector surface is at local fluid temperature.
Another interpretation is that it is the ratio of thermal resistance from the plate to ambient to the thermal
resistance from the fluid to the ambient. Thus,

F=—0o (12.35)

where U, is the loss coefficient evaluated for a temperature difference between the fluid and the ambient.
Collector efficiency factor as defined on physical basis is essentially a constant for a collector of given

geometry. But, the derivation implicitly uses the temperatures at a section and hence the concept is rather
inexact.
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12.9 TEMPERATURE DISTRIBUTION IN THE FLOW DIRECTION
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Fig. 12.6 Energy balance on a fluid element in the tube

The useful gain as expressed by Eq.(12.33), ultimately is transferred to the fluid. The fluid enters the

collectorat T, ; and leaves at T, ;. Referring to Fig.12.6,

mC, (dT, /dy)-nWF [ S -U, (T, -T

a

)} -0 (12.36)

In Eqg. (12.36), m is the mass flow rate for the collector and n is the number of tubes. Solution of

Eq.(12.36) subjectto T, =T, aty = 0 results in,

S
T =T, U —[ULnWF'y/mC ]
SL —e P (12.37)
Tf i _Ta _Ui
L

At y =1, where 1 is the length of the tubes, T, =T,. Thus, noting nWL is nothing but the area A; of

the collector, it follows,

-T

a

Tf 0

e{/-\cULF' /mcp]

_ S
U L
5 (12.38)

L

Tf'

T

a

12.10 HEAT REMOVAL FACTOR AND THE FLOW FACTOR
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It is convenient to define a quantity that relates the actual energy gain from a collector to a maximum

possible, i.e., when the entire collector is at fluid inlet temperature. This parameter termed ‘heat removal
factor', can be expressed as,

mC,(T,, -T,.)
AClS _UL(Tf,i _Ta)J

R =

(12.39)

After straight forward algebra, [using Eq.(12.37)], the heat removal factor can be expressed as,

F - mC, {1_e(/scu|_|:'/mc p)}

_ (12.40)
AU,
By dividing Eq.(12.40) both sides by F’,
. mC ~(AULF ImC
£ - Fr_ 'L’,l—e(CL ") (12.41)
F AU F

The quantity F~ (= Fr/F’) is termed the ‘flow factor' and is a function of the single parameter,

me/ACU _F ", which may be called the non-dimensional flow rate.

Useful energy gain from a collector area A in terms of the heat removal factor can be expressed by,

Q, =AF[s-U (T, -T,) (12.42)

Eq.(12.42) is the single most important equation that will be used a large number of times.
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