

Expectation values of p and p^2 for ground state of Infinite well

$$\langle p \rangle = \int_0^L \left(\sqrt{\frac{2}{L}} \sin \frac{nx}{L} \right) \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \left(\sqrt{\frac{2}{L}} \sin \frac{nx}{L} \right) dx$$
$$= \frac{\hbar}{i} \frac{2}{L} \frac{\pi}{L} \int_0^L \sin \frac{\pi x}{L} \cos \frac{\pi x}{L} dx = 0$$

$$\langle p^2 \rangle = \frac{\hbar^2 \pi^2}{L^2} \int_0^L \psi^* \psi \, dx = \frac{\hbar^2 \pi^2}{L^2}$$

Postulate 1: State of a system

The state of any physical system is specified, at each time t, by a state vector $|\psi(t)\rangle$ in a Hilbert space \mathcal{H} ; $|\psi(t)\rangle$ contains (and serves as the basis to extract) all the needed information about the system. Any superposition of state vectors is also a state vector.

Schrodinger Formulation and Heisenberg Formulation

Postulate 2: Observables and operators

To every physically measurable quantity A, called an observable or dynamical variable, there corresponds a linear Hermitian operator \hat{A} whose eigenvectors form a complete basis.

Observable

$$\vec{r}$$

$$\vec{p}$$

$$T = \frac{p^2}{2m}$$

$$E = \frac{p^2}{2m} + V(\vec{r}, t)$$

$$\vec{L} = \vec{r} \times \vec{p}$$

Postulate 3: Measurements and eigenvalues of operators The measurement of an observable A may be represented formally by the action of \hat{A} on a state vector $|\psi(t)\rangle$. The only possible result of such a measurement is one of the eigenvalues a_n (which are real) of the operator \hat{A} . If the result of a measurement of A on a state $|\psi(t)\rangle$ is a_n , the state of the system *immediately after* the measurement changes to $|\psi_n\rangle$:

 $\hat{A}|\psi(t)\rangle = a_n|\psi_n\rangle,$

vector $|\psi_n\rangle$.

Introduction of Quantum Mechanics : Dr Prince A Ganai

where $a_n = \langle \psi_n | \psi(t) \rangle$. Note: a_n is the component of $| \psi(t) \rangle$ when projected¹ onto the eigen-

Postulate 4: Probabilistic outcome of measurements

• **Discrete spectra**: When measuring an observable A of a system in a state $|\psi\rangle$, the probability of obtaining one of the nondegenerate eigenvalues a_n of the corresponding operator \hat{A} is given by

$$P_n(a_n) = \frac{|\langle \psi_n | \psi \rangle|^2}{\langle \psi | \psi \rangle} = \frac{|a_n|^2}{\langle \psi | \psi \rangle},$$

where $|\psi_n\rangle$ is the eigenstate of \hat{A} with eigenvalue a_n . If the eigenvalue a_n is *m*-degenerate, P_n becomes

$$P_n(a_n) = \frac{\sum_{j=1}^m |\langle \psi_n^j | \psi \rangle|^2}{\langle \psi | \psi \rangle} = \frac{\sum_{j=1}^m |a_n^{(j)}|^2}{\langle \psi | \psi \rangle}$$

The act of measurement changes the state of the system from $|\psi\rangle$ to $|\psi_n\rangle$. If the system is already in an eigenstate $|\psi_n\rangle$ of \hat{A} , a measurement of A yields with certainty the corresponding eigenvalue a_n : $\hat{A}|\psi_n\rangle = a_n|\psi_n\rangle$.

• Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be extended to determine the probability density that a measurement of \hat{A} yields a value between a and a + da on a system which is initially in a state $|\psi\rangle$:

$$\frac{dP(a)}{da} = \frac{|\psi(a)|^2}{\langle \psi |\psi \rangle} = \frac{|\psi(a)|^2}{\int_{-\infty}^{+\infty} |\psi(a')|^2 da'};$$

for instance, the probability density for finding a particle between x and x + dx is given by $dP(x)/dx = |\psi(x)|^2/\langle \psi |\psi \rangle$.

Postulate 5: Time evolution of a system The time evolution of the state vector $|\psi(t)\rangle$ of a system is governed by the time-dependent Schrödinger equation

$$i\hbar\frac{\partial|\psi(t)\rangle}{\partial t} =$$

where \hat{H} is the Hamiltonian operator corresponding to the total energy of the system.

- $=\hat{H}|\psi(t)\rangle,$

Connecting Quantum to Classical Mechanics

Poisson Brackets and Commutators

$$\{A, B\} = \sum_{j} \left(\frac{\partial A}{\partial q_j} \frac{\partial B}{\partial p_j} - \frac{\partial A}{\partial p_j} \frac{\partial B}{\partial q_j} \right)$$

$$\partial q_j / \partial p_k = 0, \, \partial p_j / \partial q_k = 0;$$

 $\{q_j, q_k\} = \{p_j, p_k\} = 0,$ $\{q_j, p_k\} = \delta_{jk}.$

$$\{A, B\} = -\{B, A\}$$

$$\{A, \alpha B + \beta C + \gamma D + \dots\} = \alpha \{A, B\} + \beta \{A, \{A, B\}^* = \{A^*, B^*\}$$

$$\{A, BC\} = \{A, B\}C + B\{A, C\},$$

$$\{A, \{B, C\}\} + \{B, \{C, A\}\} + \{C, \{A, B\}\} =$$

$$\{A, B^n\} = nB^{n-1}\{A, B\}, \qquad \{A^n, B\} = nA^{n-1}\{A, A, B\}$$

The total time derivative of a dynamical variable A is given by

$$\frac{dA}{dt} = \sum_{j} \left(\frac{\partial A}{\partial q_j} \frac{\partial q_j}{\partial t} + \frac{\partial A}{\partial p_j} \frac{\partial p_j}{\partial t} \right) + \frac{\partial A}{\partial t}$$

 $\frac{dA}{dt} = \{A, H\} + \frac{\partial A}{\partial t}.$

 $=\sum_{i}\left(\frac{\partial A}{\partial q_{j}}\frac{\partial H}{\partial p_{j}}-\frac{\partial A}{\partial p_{j}}\frac{\partial H}{\partial p_{j}}\right)+\frac{\partial A}{\partial t};$

Time Evolution of Expectation Values

$$\langle \hat{A} \rangle = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle.$$
$$\frac{d}{dt} \langle \hat{A} \rangle = \frac{1}{i\hbar} \langle \Psi(t) | \hat{A} \hat{H} - \hat{H} \hat{A} | \Psi$$

$$\frac{d}{dt}\langle\hat{A}\rangle = \frac{1}{i\hbar}\langle[\hat{A},\,\hat{H}]\rangle + \langle\frac{\partial\hat{A}}{\partial t}\rangle.$$

If
$$[\hat{H}, \hat{A}] = 0$$
 and $\frac{\partial \hat{A}}{\partial t} = 0 \implies \frac{d \langle \hat{A} \rangle}{dt} = 0 \implies \langle \hat{A} \rangle = \text{constant.}$

Introduction of Quantum Mechanics : Dr Prince A Ganai

$\langle (t) \rangle + \langle \Psi(t) | \frac{\partial A}{\partial t} | \Psi(t) \rangle$

$$\frac{1}{i\hbar}[\hat{A},\hat{B}] \longrightarrow \{A,B\}_{classical}.$$

