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Notice that in computing the expectation value, the operator representing the physical 
quantity operates on #(x, t), not on #*(x, t); that is, its correct position in the integral 
is between #* and #. This is not important to the outcome when the operator is sim-
ply some f (x), but it is critical when the operator includes a differentiation, as in the 
case of the momentum operator. Note that ��p2� is simply 2mE since, for the infinite 
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EXAMPLE 6-5 Expectation Values for p and p2  Find ��p� and ��p2� for the 
ground-state wave function of the infinite square well. (Before we calculate them, 
what do you think the results will be?)

SOLUTION
We can ignore the time dependence of #, in which case we have
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The particle is equally as likely to be moving in the �x as in the �x direction, so its 
average momentum is zero.
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The time-independent Schrödinger equation (Equation 6-18) can be written conveniently 
in terms of pop:
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166 CHAPTER 3. POSTULATES OF QUANTUM MECHANICS

� knowing the system’s state at a time t , how to find the state at any later time t ); that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system
The state of any physical system is specified, at each time t , by a state vector �O�t�O in a Hilbert
space H; �O�t�O contains (and serves as the basis to extract) all the needed information about
the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators
To every physically measurable quantity A, called an observable or dynamical variable, there
corresponds a linear Hermitian operator A whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators
The measurement of an observable A may be represented formally by the action of A on a state
vector �O�t�O. The only possible result of such a measurement is one of the eigenvalues an
(which are real) of the operator A. If the result of a measurement of A on a state �O�t�O is an ,
the state of the system immediately after the measurement changes to �OnO:

A�O�t�O � an�OnO� (3.1)

where an � NOn�O�t�O. Note: an is the component of �O�t�O when projected1 onto the eigen-
vector �OnO.

Postulate 4: Probabilistic outcome of measurements

� Discrete spectra: When measuring an observable A of a system in a state �OO, the proba-
bility of obtaining one of the nondegenerate eigenvalues an of the corresponding operator
A is given by

Pn�an� �
�NOn�OO�2

NO�OO
�
�an�2

NO �OO
� (3.2)

where �OnO is the eigenstate of Awith eigenvalue an . If the eigenvalue an ism-degenerate,
Pn becomes

Pn�an� �
3m
j�1 �NO

j
n �OO�2

NO �OO
�
3m
j�1 �a

� j�
n �2

NO �OO
� (3.3)

The act of measurement changes the state of the system from �OO to �OnO. If the sys-
tem is already in an eigenstate �OnO of A, a measurement of A yields with certainty the
corresponding eigenvalue an : A�OnO � an�OnO.

� Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of A yields a value be-
tween a and a � da on a system which is initially in a state �OO:

dP�a�
da

�
�O�a��2

NO �OO
�

�O�a��2
5�*
�* �O�a)��2da)

� (3.4)

for instance, the probability density for finding a particle between x and x � dx is given
by dP�x��dx � �O�x��2�NO �OO.

1To see this, we need only to expand �O�t�O in terms of the eigenvectors of A which form a complete basis: �O�t�O �3
n �OnONOn �O�t�O �

3
n an �OnO.

Schrodinger Formulation and Heisenberg Formulation
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Table 3.1 Some observables and their corresponding operators.

Observable Corresponding operator

;r ;R
;p ;P � �i �h ;V
T � p2

2m
T � � �h2

2mV
2

E � p2
2m � V �;r� t� H � � �h2

2mV
2 � V � ;R� t�

;L � ;r � ;p ;L � �i �h ;R � ;V

According to Postulate 5, the total energy E for time-dependent systems is associated to the
operator

H � i �h
"
"t
� (3.21)

This can be seen as follows. The wave function of a free particle of momentum ;p and total
energy E is given by O�;r� t� � Aei� ;p�;r�Et���h , where A is a constant. The time derivative of
O�;r� t� yields

i �h
"O�;r� t�
"t

� EO�;r� t�� (3.22)

Let us look at the eigenfunctions and eigenvalues of the momentum operator ;P . The eigen-
value equation

�i �h ;VO�;r� � ;pO�;r� (3.23)

yields the eigenfunction O�;r� corresponding to the eigenvalue ;p such that �O�;r��2d3r is the
probability of finding the particle with a momentum ;p in the volume element d3r centered
about ;r . The solution to the eigenvalue equation (3.23) is

O�;r� � Aei ;p�;r��h� (3.24)

where A is a normalization constant. Since ;p � �h;k is the eigenvalue of the operator ;P , the
eigenfunction (3.24) reduces to O�;r� � Aei ;k�;r ; hence the eigenvalue equation (3.23) becomes

;PO�;r� � �h;kO�;r�� (3.25)

To summarize, there is a one-to-one correspondence between observables and operators
(Table 3.1).

Example 3.3 (Orbital angular momentum)
Find the operator representing the classical orbital angular momentum.

Solution
The classical expression for the orbital angular momentum of a particle whose position and
linear momentum are ;r and ;p is given by ;L � ;r � ;p � lx;i � ly ;j � lz ;k, where lx � ypz � zpy ,
ly � zpx � xpz , lz � xpy � ypx .
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Postulate 5: Time evolution of a system
The time evolution of the state vector �O�t�O of a system is governed by the time-dependent
Schrödinger equation

i �h
"�O�t�O
"t

� H �O�t�O� (3.5)

where H is the Hamiltonian operator corresponding to the total energy of the system.

Remark
These postulates fall into two categories:

� The first four describe the system at a given time.

� The fifth shows how this description evolves in time.

In the rest of this chapter we are going to consider the physical implications of each one of the
four postulates. Namely, we shall look at the state of a quantum system and its interpretation,
the physical observables, measurements in quantum mechanics, and finally the time evolution
of quantum systems.

3.3 The State of a System
To describe a system in quantum mechanics, we use a mathematical entity (a complex function)
belonging to a Hilbert space, the state vector �O�t�O, which contains all the information we need
to know about the system and from which all needed physical quantities can be computed. As
discussed in Chapter 2, the state vector �O�t�O may be represented in two ways:

� A wave function O�;r� t� in the position space: O�;r� t� � N;r �O�t�O.

� A momentum wave function �� ;p� t� in the momentum space: �� ;p� t� � N ;p�O�t�O.

So, for instance, to describe the state of a one-dimensional particle in quantum mechanics we
use a complex function O�x� t� instead of two real real numbers �x� p� in classical physics.
The wave functions to be used are only those that correspond to physical systems. What

are the mathematical requirements that a wave function must satisfy to represent a physical
system? Wave functions O�x� that are physically acceptable must, along with their first deriv-
atives dO�x��dx , be finite, continuous, and single-valued everywhere. As will be discussed in
Chapter 4, we will examine the underlying physics behind the continuity conditions of O�x�
and dO�x��dx (we will see that O�x� and dO�x��dx must be be continuous because the prob-
ability density and the linear momentum are continuous functions of x).

3.3.1 Probability Density

What about the physical meaning of a wave function? Only the square of its norm, �O�;r � t��2,
has meaning. According to Born’s probabilistic interpretation, the square of the norm of
O�;r� t�,

P�;r� t� � �O�;r� t��2� (3.6)
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of the motion is provided by an isolated system, for its total linear momentum is conserved.
Note that the invariance of the system under spatial translations means there is a symmetry of
spatial homogeneity. The requirement for the homogeneity of space implies that the spatially
displaced wave function O�;r � ;a�, much like O�;r�, satisfies the Schrödinger equation.
In summary, the symmetry of time homogeneity gives rise to the conservation of energy,

whereas the symmetry of space homogeneity gives rise to the conservation of linear momentum.

In Chapter 7 we will see that the symmetry of space isotropy, or the invariance of the
Hamiltonian with respect to space rotations, leads to conservation of the angular momentum.

Parity operator
The unitary transformations we have considered so far, time translations and space translations,
are continuous. We may consider now a discrete unitary transformation, the parity. As seen in
Chapter 2, the parity transformation consists of an inversion or reflection through the origin of
the coordinate system:

PO�;r� � O��;r�� (3.111)

If the parity operator commutes with the system’s Hamiltonian,

[ H � P] � 0� (3.112)

the parity will be conserved, and hence a constant of the motion. In this case the Hamiltonian
and the parity operator have simultaneous eigenstates. For instance, we will see in Chapter 4
that the wave functions of a particle moving in a symmetric potential, V �;r� � V ��;r�, have
definite parities: they can be only even or odd. Similarly, we can ascertain that the parity of an
isolated system is a constant of the motion.

3.8 Connecting Quantum to Classical Mechanics

3.8.1 Poisson Brackets and Commutators
To establish a connection between quantum mechanics and classical mechanics, we may look
at the time evolution of observables.
Before describing the time evolution of a dynamical variable within the context of classical

mechanics, let us review the main ideas of the mathematical tool relevant to this description,
the Poisson bracket. The Poisson bracket between two dynamical variables A and B is defined
in terms of the generalized coordinates qi and the momenta pi of the system:


A� B� �
;

j

t
"A
"q j

"B
"p j

�
"A
"p j

"B
"q j

u
� (3.113)

Since the variables qi are independent of pi , we have "q j�"pk � 0, "p j�"qk � 0; thus we can
show that


q j � qk� � 
p j � pk� � 0� 
q j � pk� � = jk � (3.114)

Using (3.113) we can easily infer the following properties of the Poisson brackets:

� Antisymmetry

A� B� � �
B� A� (3.115)
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� Linearity


A� :B � ;C � < D � � � �� � :
A� B� � ;
A� C� � < 
A� D� � � � � (3.116)

� Complex conjugate

A� B�` � 
A`� B`� (3.117)

� Distributivity


A� BC� � 
A� B�C � B
A� C�� 
AB� C� � A
B� C� � 
A� C�B (3.118)

� Jacobi identity


A� 
B� C�� � 
B� 
C� A�� � 
C� 
A� B�� � 0 (3.119)

� Using d f n�x��dx � n f n�1�x�d f �x��dx , we can show that


A� Bn� � nBn�1
A� B�� 
An� B� � nAn�1
A� B� (3.120)

These properties are similar to the properties of the quantum mechanical commutators seen in
Chapter 2.
The total time derivative of a dynamical variable A is given by
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in deriving this relation we have used the Hamilton equations of classical mechanics:

dq j
dt

�
"H
"p j

�
dp j
dt

� �
"H
"q j

� (3.122)

where H is the Hamiltonian of the system. The total time evolution of a dynamical variable A
is thus given by the following equation of motion:

d A
dt
� 
A� H� �

"A
"t
� (3.123)

Note that if A does not depend explicitly on time, its time evolution is given simply by d A�dt �

A� H�. If d A�dt � 0 or 
A� H� � 0, A is said to be a constant of the motion.
Comparing the classical relation (3.123) with its quantum mechanical counterpart (3.88),

d
dt
N AO �

1
i �h
N[ A� H ]O � N

" A
"t
O� (3.124)

we see that they are identical only if we identify the Poisson bracket 
A� H� with the commuta-
tor [ A� H ]��i �h�. We may thus infer the following general rule. The Poisson bracket of any pair
of classical variables can be obtained from the commutator between the corresponding pair of
quantum operators by dividing it by i �h:

1
i �h
[ A� B] �� 
A� B�classical � (3.125)
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d A
dt
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A� H� �

"A
"t
� (3.123)

Note that if A does not depend explicitly on time, its time evolution is given simply by d A�dt �

A� H�. If d A�dt � 0 or 
A� H� � 0, A is said to be a constant of the motion.
Comparing the classical relation (3.123) with its quantum mechanical counterpart (3.88),

d
dt
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1
i �h
N[ A� H ]O � N

" A
"t
O� (3.124)

we see that they are identical only if we identify the Poisson bracket 
A� H� with the commuta-
tor [ A� H ]��i �h�. We may thus infer the following general rule. The Poisson bracket of any pair
of classical variables can be obtained from the commutator between the corresponding pair of
quantum operators by dividing it by i �h:

1
i �h
[ A� B] �� 
A� B�classical � (3.125)
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� Linearity


A� :B � ;C � < D � � � �� � :
A� B� � ;
A� C� � < 
A� D� � � � � (3.116)

� Complex conjugate

A� B�` � 
A`� B`� (3.117)

� Distributivity


A� BC� � 
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A� C�� 
AB� C� � A
B� C� � 
A� C�B (3.118)
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C� 
A� B�� � 0 (3.119)
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Multiplying both sides of (3.79) by�`�;r� t� and both sides of (3.80) by��;r � t�, and subtracting
the two resulting equations, we obtain

i �h
"
"t
d
�`�;r� t���;r� t�

e
� � �

h2

2m

K
�`�;r � t�V2��;r � t���V2�`

L
� (3.81)

We can rewrite this equation as

"I�;r � t�
"t

� ;V � ;J � 0� (3.82)

where I�;r � t� and ;J are given by

I�;r� t� � �`�;r � t���;r� t�� ;J �;r � t� �
i �h
2m

r
� ;V�` ��` ;V�

s
� (3.83)

I�;r � t� is called the probability density, while ;J �;r� t� is the probability current density, or sim-
ply the current density, or even the particle density flux. By analogy with charge conservation
in electrodynamics, equation (3.82) is interpreted as the conservation of probability.
Let us find the relationship between the density operators I�t� and I�t0�. Since ���t�O �

U�t� t0����t0�O and N��t�� � N��t0�� U†�t� t0�, we have

I�t� � ���t�ON��t�� � U�t� t0����0�ON��0�� U†�t� t0�� (3.84)

This is known as the density operator for the state ���t�O. Hence knowing I�t0� we can calcu-
late I�t� as follows:

I�t� � U�t� t0� I�t0� U†�t� t0�� (3.85)

3.6.5 Time Evolution of Expectation Values
We want to look here at the time dependence of the expectation value of a linear operator; if the
state ���t�O is normalized, the expectation value is given by

N AO � N��t�� A���t�O� (3.86)

Using (3.76) and (3.77), we can write dN AO�dt as follows:

d
dt
N AO �

1
i �h
N��t�� A H � H A���t�O � N��t��

"A
"t
���t�O (3.87)

or
d
dt
N AO �

1
i �h
N[ A� H ]O � N

" A
"t
O� (3.88)

Two important results stem from this relation. First, if the observable A does not depend ex-
plicitly on time, the term " A�"t will vanish, so the rate of change of the expectation value of A
is given by N[ A� H ]O� i �h. Second, besides not depending explicitly on time, if the observable A
commutes with the Hamiltonian, the quantity dN AO�dt will then be zero; hence the expectation
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value N AOwill be constant in time. So if A commutes with the Hamiltonian and is not dependent
on time, the observable A is said to be a constant of the motion; that is, the expectation value of
an operator that does not depend on time and that commutes with the Hamiltonian is constant
in time:

If [ H � A] � 0 and
" A
"t
� 0 >"

dN AO
dt

� 0 >" N AO � constant� (3.89)

For instance, we can verify that the energy, the linear momentum, and the angular momentum

of an isolated system are conserved: dN HO�dt � 0, dN ;PO�dt � 0, and dN ;LO�dt � 0. This

implies that the expectation values of H , ;P , and ;L are constant. Recall from classical physics
that the conservation of energy, linear momentum, and angular momentum are consequences
of the following symmetries, respectively: homogeneity of time, homogeneity of space, and
isotropy of space. We will show in the following section that these symmetries are associated,
respectively, with invariances in time translation, space translation, and space rotation.
As an example, let us consider the time evolution of the expectation value of the den-

sity operator I�t� � ���t�ON��t��; see (3.84). From (3.5), which leads to "���t�O�"t �
�1� i �h� H ���t�O and "N��t���"t � ��1� i �h�N��t�� H , we have

" I�t�
"t

�
1

i �h
H ���t�ON��t�� �

1

i �h
���t�ON��t�� H � �

1

i �h
[ I�t�� H ]� (3.90)

A substitution of this relation into (3.88) leads to

d
dt
N I�t�O �

1

i �h
N[ I�t�� H ]O � N

" I�t�
"t

O �
1

i �h
N[ I�t�� H ]O �

1

i �h
N[ I�t�� H ]O � 0� (3.91)

So the density operator is a constant of the motion. In fact, we can easily show that

N[ I�t�� H ]O � N��t��[���t�ON��t��� H ]���t�O
� N��t����t�ON��t�� H ���t�O � N��t�� H ���t�ON��t����t�O
� 0� (3.92)

which, when combined with (3.90), yields N" I�t��"tO � 0.
Finally, we should note that the constants of motion are nothing but observables that can be

measured simultaneously with the energy to arbitrary accuracy. If a system has a complete set
of commuting operators (CSCO), the number of these operators is given by the total number of
constants of the motion.

3.7 Symmetries and Conservation Laws
We are interested here in symmetries that leave the Hamiltonian of an isolated system invariant.
We will show that for each such symmetry there corresponds an observable which is a constant
of the motion. The invariance principles relevant to our study are the time translation invariance
and the space translation invariance. We may recall from classical physics that whenever a
system is invariant under space translations, its total momentum is conserved; and whenever it
is invariant under rotations, its total angular momentum is also conserved.
To prepare the stage for symmetries and conservation laws in quantum mechanics, we are

going to examine the properties of infinitesimal and finite unitary transformations that are most
essential to these invariance principles.
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where H is the Hamiltonian of the system. The total time evolution of a dynamical variable A
is thus given by the following equation of motion:
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we see that they are identical only if we identify the Poisson bracket 
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tor [ A� H ]��i �h�. We may thus infer the following general rule. The Poisson bracket of any pair
of classical variables can be obtained from the commutator between the corresponding pair of
quantum operators by dividing it by i �h:

1
i �h
[ A� B] �� 
A� B�classical � (3.125)



Introduction of Quantum Mechanics  : Dr Prince A Ganai

Lecture 06 
Concluded

Curiosity Kills the Cat


