


Expectation values of p and p2 for ground state of Infinite well
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Postulate 1: State of a system
The state of any physical system 1s specified, at each time 7, by a state vector |y (¢)) in a Hilbert
space H; |y (¢)) contains (and serves as the basis to extract) all the needed information about

the system. Any superposition of state vectors 1s also a state vector.

Schrodinger Formulation and Heisenberg Formulation



Postulate 2: Observables and operators
To every physically measurable quantity 4, called an observable or dynamical variable, there
corresponds a linear Hermitian operator 4 whose eigenvectors form a complete basis.
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Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable A may be represented formally by the action of A on a state
vector |y (¢)). The only possible result of such a measurement is one of the eigenvalues a,
(which are real) of the operator A. If the result of a measurement of 4 on a state |y (%)) 18 ay,
the state of the system immediately after the measurement changes to |y, ):

ﬁ"ﬂ@)) = an|Wn),

where a,, = (w,|w(¢)). Note: a, is the component of |y (¢)) when projected! onto the eigen-
vector |yy,).




Postulate 4: Probabilistic outcome of measurements

e Discrete spectra: When measuring an observable A of a system 1n a state |y), the proba-
bility of obtaining one of the nondegenerate eigenvalues a,, of the corresponding operator
A 1s given by
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where |y,) 1s the eigenstate of A with eigenvalue a,,. If the eigenvalue a,, 1s m-degenerate,
P, becomes

P @) = 2= will)? 30 a1
R (w|w) o {wly)

The act of measurement changes the state of the system from [y) to |wy). If the sys-
tem 1s already 1n an eigenstate |y, ) of A, a measurement of A yields with certainty the
corresponding eigenvalue a,,: A|y,) = a,|y,).

e Continuous spectra: The relation (3.2), which 1s valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of A yields a value be-
tween a and a + da on a system which 1s 1nitially 1n a state |y ):

dP@) _ly@P* _  ly@l*
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for instance, the probability density for finding a particle between x and x 4+ dx 1s given
by dP(x)/dx = |y (X)I*/(y|y).




Postulate S: Time evolution of a system
The time evolution of the state vector |y (¢)) of a system 1s governed by the time-dependent
Schrodinger equation

ih@\w(m

Py = Hly(2)),

where H is the Hamiltonian operator corresponding to the total energy of the system.




Connecting Quantum to Classical Mechanics

Poisson Brackets and Commutators A, B}y =—{B, 4}
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The total time derivative of a dynamical variable A4 1s given by

d —\og; ot~ opj ot ) ot & - Op; op;) ot

8q] 6p] 8p] 8p]

dq; OH dpj  OH
dt  op;’ dt  0q;
d 0



Time Evolution of Expectation Values
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