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Since the wave function is zero in regions of space where the potential energy is infi-
nite, the contributions to the integral from �@ to 0 and from L to �@ will both be 
zero. Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain 
An � �2�L�1�2 independent of n. The normalized wave function solutions for this 
problem, also called eigenfunctions, are then

 Cn�x� � � 2
L

 sin 
nPx

L
  n � 1, 2, 3,c  6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for 
the vibrating-string problem. The wave functions and the probability distribution 
functions Pn(x) are sketched in Figure 6-4 for the lowest energy state n � 1, called the 
ground state, and for the first two excited states, n � 2 and n � 3. (Since these wave 
functions are real, Pn�x� � C
nCn � C2

n.) Notice in Figure 6-4 that the maximum 
amplitudes of each of the Cn(x) are the same, �2�L�1�2, as are those of Pn(x), 2�L. 
Note, too, that both Cn(x) and Pn(x) extend to {@. They just happen to be zero for
x � 0 and x � L in this case.

The number n in the equations above is called a quantum number. It specifies 
both the energy and the wave function. Given any value of n, we can immediately 
write down the wave function and the energy of the system. The quantum number n 
occurs because of the boundary conditions C(x) � 0 at x � 0 and x � L. We will see 
in Section 7-1 that for problems in three dimensions, three quantum numbers arise, 
one associated with boundary conditions on each coordinate.

FIGURE 6-3 Graph of energy versus x for a particle in an infinitely deep well. The potential 
energy V(x) is shown with the colored lines. The set of allowed values for the particle’s total 
energy En as given by Equation 6-24 form the energy-level diagram for the infinite square well 
potential. Classically, a particle can have any value of energy. Quantum mechanically, only 
the values given by En � n2�62P2�2mL2� yield well-behaved solutions of the Schrödinger 
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.
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made arbitrarily high and steep by increasing the potential V and reducing the separa-
tion between each grid-electrode pair. In the limit such a potential energy function 
looks like that in Figure 6-2, which is a graph of the potential energy of an infinite 
square well. For this problem the potential energy is of the form

V�x� � 0  0 � x � L
V�x� � @  x � 0 and x � L

 6-21

Although such a potential is clearly artificial, the problem is worth careful study for 
several reasons: (1) exact solutions to the Schrödinger equation can be obtained with-
out the difficult mathematics that usually accompanies its solution for more realistic 
potential functions; (2) the problem is closely related to the vibrating-string problem 
familiar in classical physics; (3) it illustrates many of the important features of all 
quantum-mechanical problems; and finally, (4) this potential is a relatively good 
approximation to some real situations, for example, the motion of a free electron 
inside a metal.

Since the potential energy is infinite outside the well, the wave function is 
required to be zero there; that is, the particle must be inside the well. (As we proceed 
through this and other problems, keep in mind Born’s interpretation: the probability 
density of the particle’s position is proportional to U C U 2.) We then need only to solve 
Equation 6-18 for the region inside the well 0 � x � L, subject to the condition that 
since the wave function must be continuous, C(x) must be zero at x � 0 and x � L. 
Such a condition on the wave function at a boundary (here, the discontinuity of the 
potential energy function) is called a boundary condition. We will see that, mathemat-
ically, it is the boundary conditions together with the requirement that C(x) 4  0 as
x 4  {@ that leads to the quantization of energy. A classical example is that of a 
vibrating string fixed at both ends. In that case the wave function y(x, t) is the dis-
placement of the string. If the string is fixed at x � 0 and x � L, we have the same 
boundary condition on the vibrating-string wave function: namely, that y(x, t) be zero 
at x � 0 and x � L. These boundary conditions lead to discrete allowed frequencies of 
vibration of the string. It was this quantization of frequencies (which always occurs 
for standing waves in classical physics), along with de Broglie’s hypothesis, that 
motivated Schrödinger to look for a wave equation for electrons.

The standing-wave condition for waves on a string of length L fixed at both ends 
is that an integer number of half wavelengths fit into the length L:

 n 
L

2
� L  n � 1, 2, 3, c  6-22

We will see below that the same condition follows from the solution of the Schrödinger 
equation for a particle in an infinite square well. Since the wavelength is related to the 
momentum of the particle by the de Broglie relation p � h�L and the total energy of 
the particle in the well is just the kinetic energy p2�2m (see Figure 6-2), this quantum 
condition on the wavelength implies that the energy is quantized and the allowed val-
ues are given by

 E �
p2

2m
�

h2

2mL2 �
h2

2m�2L�n�2 � n2 
h2

8mL2 6-23

Since the energy depends on the integer n, it is customary to label it En. In terms of 
6 � h�2P, the energy is given by

 En � n2 
P262

2mL2 � n2 E1  n � 1, 2, 3, c  6-24

FIGURE 6-2 Infinite square 
well potential energy. For 
0 � x � L, the potential 
energy V(x) is zero. Outside 
this region, V(x) is infinite. 
The particle is confined to the 
region in the well 0 � x � L.
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Since the wave function is zero in regions of space where the potential energy is infi-
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zero. Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain 
An � �2�L�1�2 independent of n. The normalized wave function solutions for this 
problem, also called eigenfunctions, are then
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L

 sin 
nPx

L
  n � 1, 2, 3,c  6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for 
the vibrating-string problem. The wave functions and the probability distribution 
functions Pn(x) are sketched in Figure 6-4 for the lowest energy state n � 1, called the 
ground state, and for the first two excited states, n � 2 and n � 3. (Since these wave 
functions are real, Pn�x� � C
nCn � C2

n.) Notice in Figure 6-4 that the maximum 
amplitudes of each of the Cn(x) are the same, �2�L�1�2, as are those of Pn(x), 2�L. 
Note, too, that both Cn(x) and Pn(x) extend to {@. They just happen to be zero for
x � 0 and x � L in this case.

The number n in the equations above is called a quantum number. It specifies 
both the energy and the wave function. Given any value of n, we can immediately 
write down the wave function and the energy of the system. The quantum number n 
occurs because of the boundary conditions C(x) � 0 at x � 0 and x � L. We will see 
in Section 7-1 that for problems in three dimensions, three quantum numbers arise, 
one associated with boundary conditions on each coordinate.
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energy V(x) is shown with the colored lines. The set of allowed values for the particle’s total 
energy En as given by Equation 6-24 form the energy-level diagram for the infinite square well 
potential. Classically, a particle can have any value of energy. Quantum mechanically, only 
the values given by En � n2�62P2�2mL2� yield well-behaved solutions of the Schrödinger 
equation. As we become more familiar with energy-level diagrams, the x axis will be omitted.
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 6-2 The Infinite Square Well 241

Comparison with Classical Results
Let us compare our quantum-mechanical solution of this problem with the classical 
solution. In classical mechanics, if we know the potential energy function V(x), we 
can find the force from Fx � �dV�dx and thereby obtain the acceleration 
ax � d2x�dt2 from Newton’s second law. We can then find the position x as a func-
tion of time t if we know the initial position and velocity. In this problem there is no 
force when the particle is between the walls of the well because V � 0 there. The par-
ticle therefore moves with constant speed in the well. Near the edge of the well the 
potential energy rises discontinuously to infinity—we may describe this as a very 
large force that acts over a very short distance and turns the particle around at the wall 
so that it moves away with its initial speed. Any speed, and therefore any energy, is 
permitted classically. The classical description breaks down because, according to the 
uncertainty principle, we can never precisely specify both the position and momen-
tum (and therefore velocity) at the same time. We can therefore never specify the ini-
tial conditions precisely and cannot assign a definite position and momentum to the 
particle. Of course, for a macroscopic particle moving in a macroscopic box, the 
energy is much larger than E1 of Equation 6-25, and the minimum uncertainty of 
momentum, which is of the order of 6�L, is much less than the momentum and less 
than experimental uncertainties. Then the difference in energy between adjacent 
states will be a small fraction of the total energy, quantization will be unnoticed, and 
the classical description will be adequate.11

Let us also compare the classical prediction for the distribution of measure-
ments of position with those from our quantum-mechanical solution. Classically, the 
probability of finding the particle in some region dx is proportional to the time spent 
in dx, which is dx�v, where v is the speed. Since the speed is constant, the classical 
distribution function is just a constant inside the well. The normalized classical distri-
bution function is

PC�x� �
1
L

FIGURE 6-4 Wave functions 
Cn(x) and probability densities 
Pn�x� � C2

n�x� for n � 1, 2, 
and 3 for the infinite square 
well potential. Though not 
shown, Cn(x) � 0 for x � 0 
and x � L.
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k′ 
2 =

2m
ℏ2

(V0 + E)k2 = −
2mE
ℏ2

k2 + k′ 
2 =

2mV0

ℏ2
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determination of the allowed energy levels in a finite square well can be obtained 
from a detailed solution of the problem. Figure 6-12 shows the wave functions and 
the probability distributions for the ground state and for the first two excited states. 
From this figure we see that the wavelengths inside the well are slightly longer than 
the corresponding wavelengths for the infinite well of the same width, so the corre-
sponding energies are slightly less than those of the infinite well, as Figure 6-13 
illustrates. Another feature of the finite-well problem is that there are only a finite 
number of allowed energies, depending on the size of V0. For very small V0 there is 
only one allowed energy level; that is, only one bound state can exist. This will be 
quite apparent in the detailed solution in the More section.

Note that, in contrast to the classical case, there is some probability of finding the 
particle outside the well, in the regions x � L or x � 0. In these regions, the total 
energy is less than the potential energy, so it would seem that the kinetic energy must 
be negative. Since negative kinetic energy has no meaning in classical physics, it is 
interesting to speculate about the meaning of this penetration of wave function beyond 
the well boundary. Does quantum mechanics predict that we could measure a nega-
tive kinetic energy? If so, this would be a serious defect in the theory. Fortunately, we 
are saved by the uncertainty principle. We can understand this qualitatively as follows 
(we will consider the region x � L only). Since the wave function decreases as e�Ax, 
with A given by Equation 6-34, the probability density C2 � e�2Ax becomes very 
small in a distance of the order of $x y A�1. If we consider C(x) to be negligible 
beyond x � L � A�1, we can say that finding the particle in the region x � L is 
roughly equivalent to localizing it in a region $x y A�1. Such a measurement intro-
duces an uncertainty in momentum of the order of $p � h�$x � hA and a minimum 
kinetic energy of the order of �$p�2�2m � h2A2�2m � V0 � E. This kinetic energy 
is just enough to prevent us from measuring a negative kinetic energy! The penetration 
of the wave function into a classically forbidden region does have important conse-
quences in tunneling or barrier penetration, which we will discuss in Section 6-6.

Much of our discussion of the finite-well problem applies to any problem in 
which E � V(x) in some region and E � V(x) outside that region. Consider, for exam-
ple, the potential energy V(x) shown in Figure 6-14. Inside the well, the Schrödinger 
equation is of the form

 C��x� � �k2C�x� 6-35
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FIGURE 6-12 Wave 
functions Cn(x) and 
probability distributions 
C2
n�x� for n � 1, 2, and 3

for the finite square well. 
Compare these with 
Figure 6-4 for the infinite 
square well, where the wave 
functions are zero at x � 0 
and x � L. The wavelengths 
are slightly longer than the 
corresponding ones for the 
infinite well, so the allowed 
energies are somewhat 
smaller.
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where k2 � 2m�E � V�x� � �62 now depends on x. The solutions of this equation are 
no longer simple sine or cosine functions because the wave number k � 2P�L varies 
with x, but since C� and C have opposite signs, C will always curve toward the axis 
and the solutions will oscillate. Outside the well, C will curve away from the axis so 
there will be only certain values of E for which solutions exist that approach zero as
x approaches infinity.

More
 In most cases the solution of finite-well problems involves transcen-
dental equations and is very difficult. For some finite potentials, 
however, graphical solutions are relatively simple and provide both 
insights and numerical results. As an example, we have included 
the Graphical Solution of the Finite Square Well on the home page: 
www.whfreeman.com/tiplermodernphysics6e. See also Equations 
6-36 through 6-43 and Figure 6-15 here.

More

FIGURE 6-13  Comparison of the lowest four energy levels of an infinite square well (broken 
lines) with those of a finite square well (solid lines) of the same width. As the depth of the 
finite well decreases, it loses energy levels out of the top of the well; however, the n � 1 level 
remains even as V0 4 0.Tipler: Modern Physics 6/e

Perm fig.: 613  New fig.: 6-13
First Draft: 2011-05-16
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FIGURE 6-14 Arbitrary well-
type potential with possible 
energy E. Inside the well
[E � V(x)], C(x) and C�(x) 
have opposite signs, and the 
wave function will oscillate. 
Outside the well, C(x) and 
C�(x) have the same sign, and, 
except for certain values of E, 
the wave function will not be 
well behaved.
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from which it follows that C � {1. If C � 1, C(x) is an even function, that is,
C(�x) � C(x). If C � �1, then C(x) is an odd function, that is, C(�x) � �C(x). Par-
ity is used in quantum mechanics to describe the symmetry properties of wave func-
tions under a reflection of the space coordinates in the origin, that is, under a parity 
operation. The terms even and odd parity describe the symmetry of the wave functions, 
not whether the quantum numbers are even or odd. We will have more on parity in 
Chapter 12.

6-6 Reflection and Transmission 
of Waves 
Up to this point, we have been concerned with bound-state problems in which the 
potential energy is larger than the total energy for large values of x. In this section, we 
will consider some simple examples of unbound states for which E is greater than 
V(x) as x gets larger in one or both directions. For these problems d2C�x� �dx2 and 
C(x) have opposite signs for those regions of x where E � V(x), so C(x) in those 
regions curves toward the axis and does not become infinite at large values of U x U ; 
therefore, any value of E is allowed. Such wave functions are not normalizable since 
C(x) does not approach zero as x goes to infinity in at least one direction and, as a 
consequence,

)
� @

� @

U C�x� U 2dx 4 @

A complete solution involves combining infinite plane waves into a wave packet 
of finite width. The finite packet is normalizable. However, for our purposes it is 
 sufficient to note that the integral above is bounded between the limits a and b, pro-
vided only that U b � a U � @ . Such wave functions are most frequently encountered, 
as we are about to do, in the scattering of beams of particles from potentials, so it is 
usual to normalize such wave functions in terms of the density of particles R in the 
beam. Thus,

)
b

a
U C�x� U 2dx � )

b

a
R dx � )

b

a
dN � N

where dN is the number of particles in the interval dx and N is the number of particles 
in the interval (b � a).14 The wave nature of the Schrödinger equation leads, even so, 
to some very interesting consequences.

Step Potential
Consider a region in which the potential energy is the step function

 V�x� � 0  for  x � 0
 V�x� � V0  for  x � 0

as shown in Figure 6-21. We are interested in what happens when a beam of particles, 
each with the same total energy E, moving from left to right encounters the step.

The classical answer is simple. For x � 0, each particle moves with speed 
v � �2E�m�1�2. At x � 0, an impulsive force acts on it. If the total energy E is less 
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than V0, the particle will be turned around and will move to the left at its original speed; 
that is, it will be reflected by the step. If E is greater than V0, the particle will continue 
moving to the right but with reduced speed, given by v � �2�E � V0� �m�1�2. We 
might picture this classical problem as a ball rolling along a level surface and coming 
to a steep hill of height y0, given by mgy0 � V0. If its original kinetic energy is less 
than V0, the ball will roll partway up the hill and then back down and to the left along 
the level surface at its original speed. If E is greater than V0, the ball will roll up the 
hill and proceed to the right at a smaller speed.

The quantum-mechanical result is similar to the classical one for E � V0 but 
quite different when E � V0, as in Figure 6-22a. The Schrödinger equation in each of 
the two space regions shown in the diagram is given by

Region I

 �x � 0�  d2C�x�
dx2 � �k2

1C�x� 6-61

Region II

 �x � 0�  d2C�x�
dx2 � �k2

2C�x� 6-62

k1 �
�2mE

6
  and  k2 �

�2m�E � V0�
6

The general solutions are

Region I

 �x � 0�  CI�x� � Aeik1x � Be�ik1x 6-63

Region II

 �x � 0�  CII�x� � Ceik2x � De�ik2x 6-64

FIGURE 6-21  Step potential. 
A classical particle incident 
from the left, with total 
energy E greater than V0,
is always transmitted. The 
potential change at x � 0 
merely provides an impulsive 
force that reduces the speed 
of the particle. However, 
a wave incident from the left 
is partially transmitted and 
partially reflected because the 
wavelength changes abruptly 
at x � 0.

0

V(x )

V 0

x

FIGURE 6-22 (a) A potential step. Particles 
are incident on the step from the left toward 
the right, each with total energy E � V0.
(b) The wavelength of the incident wave 
(region I) is shorter than that of the 
transmitted wave (region II). Since k2 � k1, 
UC U 2 � UA U 2; however, the transmission 
coefficient T � 1.
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quite different when E � V0, as in Figure 6-22a. The Schrödinger equation in each of 
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force that reduces the speed 
of the particle. However, 
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FIGURE 6-22 (a) A potential step. Particles 
are incident on the step from the left toward 
the right, each with total energy E � V0.
(b) The wavelength of the incident wave 
(region I) is shorter than that of the 
transmitted wave (region II). Since k2 � k1, 
UC U 2 � UA U 2; however, the transmission 
coefficient T � 1.
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than V0, the particle will be turned around and will move to the left at its original speed; 
that is, it will be reflected by the step. If E is greater than V0, the particle will continue 
moving to the right but with reduced speed, given by v � �2�E � V0� �m�1�2. We 
might picture this classical problem as a ball rolling along a level surface and coming 
to a steep hill of height y0, given by mgy0 � V0. If its original kinetic energy is less 
than V0, the ball will roll partway up the hill and then back down and to the left along 
the level surface at its original speed. If E is greater than V0, the ball will roll up the 
hill and proceed to the right at a smaller speed.

The quantum-mechanical result is similar to the classical one for E � V0 but 
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FIGURE 6-22 (a) A potential step. Particles 
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than V0, the particle will be turned around and will move to the left at its original speed; 
that is, it will be reflected by the step. If E is greater than V0, the particle will continue 
moving to the right but with reduced speed, given by v � �2�E � V0� �m�1�2. We 
might picture this classical problem as a ball rolling along a level surface and coming 
to a steep hill of height y0, given by mgy0 � V0. If its original kinetic energy is less 
than V0, the ball will roll partway up the hill and then back down and to the left along 
the level surface at its original speed. If E is greater than V0, the ball will roll up the 
hill and proceed to the right at a smaller speed.

The quantum-mechanical result is similar to the classical one for E � V0 but 
quite different when E � V0, as in Figure 6-22a. The Schrödinger equation in each of 
the two space regions shown in the diagram is given by
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6

The general solutions are

Region I

 �x � 0�  CI�x� � Aeik1x � Be�ik1x 6-63

Region II

 �x � 0�  CII�x� � Ceik2x � De�ik2x 6-64

FIGURE 6-21  Step potential. 
A classical particle incident 
from the left, with total 
energy E greater than V0,
is always transmitted. The 
potential change at x � 0 
merely provides an impulsive 
force that reduces the speed 
of the particle. However, 
a wave incident from the left 
is partially transmitted and 
partially reflected because the 
wavelength changes abruptly 
at x � 0.
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FIGURE 6-22 (a) A potential step. Particles 
are incident on the step from the left toward 
the right, each with total energy E � V0.
(b) The wavelength of the incident wave 
(region I) is shorter than that of the 
transmitted wave (region II). Since k2 � k1, 
UC U 2 � UA U 2; however, the transmission 
coefficient T � 1.
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Specializing these solutions to our situation where we are assuming the incident beam 
of particles to be moving from left to right, we see that the first term in Equation 6-63 
represents that beam since multiplying Aeik1x by the time part of #(x, t), e�iVt, yields 
a plane wave (i.e., a beam of free particles) moving to the right. The second term, 

Be�ik1x, represents particles moving to the left in Region I. In Equation 6-64, D � 0 
since that term represents particles incident on the potential step from the right and 
there are none. Thus, we have that the constant A is known or at least obtainable 
(determined by normalization of Aeik1x in terms of the density of particles in the beam 
as explained above) and the constants B and C are yet to be found. We find them by 
applying the continuity condition on C(x) and dC�x� �dx at x � 0, that is, by requiring 
that CI(0) � CII(0) and dC�0� �dx � dCII�0� �dx. Continuity of C at x � 0 yields

CI�0� � A � B � CII�0� � C

or

 A � B � C 6-65a

Continuity of dC�dx at x � 0 gives

 k1A � k1B � k2C 6-65b

Solving Equations 6-65a and b for B and C in terms of A (see Problem 6-49), 
we have

 B �
k1 � k2

k1 � k2
 A �

E1�2 � �E � V0�1�2
E1�2 � �E � V0�1�2 A 6-66

 C �
2k1

k1 � k2
 A �

2E1�2
E1�2 � �E � V0�1�2  A 6-67

where Equations 6-66 and 6-67 give the relative amplitude of the reflected and trans-
mitted waves, respectively. It is usual to define the coefficients of reflection R and 
transmission T, the relative rates at which particles are reflected and transmitted, in 
terms of the squares of the amplitudes A, B, and C as15

 R �
UB U 2

UA U 2 � 4 k1 � k2

k1 � k2
5 2

 6-68

 T �
k2

k1
 
UC U 2

UA U 2 �
4k1k2�k1 � k2�2 6-69

from which it can be readily verified that

 T � R � 1 6-70

Among the interesting consequences of the wave nature of the solutions to Schrödinger’s 
equation, notice the following:

1. Even though E � V0, R is not 0; that is, in contrast to classical expectations, 
some of the particles are reflected from the step. (This is analogous to the 
internal reflection of electromagnetic waves at the interface of two media.)

2. The value of R depends on the difference between k1 and k2 but not on which
is larger; that is, a step down in the potential produces the same reflection as 
a step up of the same size.
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Since k � p�6 � 2P�L, the wavelength changes as the beam passes the step. We 
might also expect that the amplitude of CII will be less than that of the incident 
wave; however, recall that the U C U 2 is proportional to the particle density. Since 
particles move more slowly in Region II (k2 � k1), U CII U 2 may be larger than U CI U 2. 
 Figure 6-22b illustrates these points. Figure 6-23 shows the time development of a 
wave packet incident on a potential step for E � V0.

Now let us consider the case shown in Figure 6-24a, where E � V0. Classically, 
we expect all particles to be reflected at x � 0; however, we note that k2 in Equa-
tion 6-64 is now an imaginary number since E � V0. Thus,

 CII�x� � Ceik2x � Ce�Ax 6-71

is a real exponential function where A � �2m�V0 � E� �6. (We choose the positive 
root so that CII 4  0 as x 4 @.) This means that the numerator and denominator of 
the right side of Equation 6-66 are complex conjugates of each other; hence 
UB U 2 � UA U 2, R � 1, and T � 0. Figure 6-25 is a graph of both R and T versus energy 

FIGURE 6-23  Time development of a 
one-dimensional wave packet representing a 
particle incident on a step potential for E � V0. 
The position of a classical particle is indicated by 
the dot. Note that part of the packet is transmitted 
and part is reflected. The reflected wave indicates 
that there is some probability that the particle is 
reflected by the step, even though E � V0 . The 
sharp spikes that appear are artifacts of the 
discontinuity in the slope of V(x) at x � 0.
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for a potential step. In agreement with the classical prediction, all of the particles 
(waves) are reflected back into Region I. However, another interesting result of our 
solution of Schrödinger’s equation is that the particle waves do not all reflect at x � 0. 
Since CII is an exponential decreasing toward the right, the particle density in 
Region II is proportional to

 U CII U 2 � UC U 2e�2Ax 6-72

Figure 6-24b shows the wave function for the case E � V0. The wave function does 
not go to zero at x � 0 but decays exponentially, as does the wave function for the 
bound state in a finite square well problem. The wave penetrates slightly into the clas-
sically forbidden region x � 0 but eventually is completely reflected. (As discussed in 
Section 6-3, there is no prediction that a negative kinetic energy will be measured in 
such a region because to locate the particle in such a region introduces an uncertainty 
in the momentum corresponding to a minimum kinetic energy greater than V0 � E.) 
This situation is similar to that of total internal reflection in optics.

EXAMPLE 6-6 Reflection from a Step with E � V0  A beam of electrons, each 
with energy E � 0.1 V0, are incident on a potential step with V0 � 2 eV. This is of 
the order of magnitude of the work function for electrons at the surface of metals 
(see Section 3-4). Graph the relative probability U C U 2 of particles penetrating the 
step up to a distance x � 10�9 m, or roughly five atomic diameters.

SOLUTION
For x � 0, the wave function is given by Equation 6-71. The value of UC U 2 is, from 
Equation 6-67,

UC U 2 � 3 2�0.1V0�1�2�0.1 V0�1�2 � ��0.9 V0�1�2 3 2 � 0.4

where we have taken UA U 2 � 1. Computing e�2Ax for several values of x from 0 to 
10�9 m gives, with 2A � 2�2m�0.9 V0� �1�2�6, the first two columns of Table 6-2. 
Taking e�2Ax and then multiplying by UC U 2 � 0.4 yields U C U 2, which is graphed in 
Figure 6-26.
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Introduction of Quantum Mechanics  : Dr Prince A Ganai

Chapter 3

Postulates of Quantum Mechanics

3.1 Introduction
The formalism of quantum mechanics is based on a number of postulates. These postulates are
in turn based on a wide range of experimental observations; the underlying physical ideas of
these experimental observations have been briefly mentioned in Chapter 1. In this chapter we
present a formal discussion of these postulates, and how they can be used to extract quantitative
information about microphysical systems.
These postulates cannot be derived; they result from experiment. They represent the mini-

mal set of assumptions needed to develop the theory of quantum mechanics. But how does one
find out about the validity of these postulates? Their validity cannot be determined directly;
only an indirect inferential statement is possible. For this, one has to turn to the theory built
upon these postulates: if the theory works, the postulates will be valid; otherwise they will
make no sense. Quantum theory not only works, but works extremely well, and this represents
its experimental justification. It has a very penetrating qualitative as well as quantitative pre-
diction power; this prediction power has been verified by a rich collection of experiments. So
the accurate prediction power of quantum theory gives irrefutable evidence to the validity of
the postulates upon which the theory is built.

3.2 The Basic Postulates of Quantum Mechanics
According to classical mechanics, the state of a particle is specified, at any time t , by two fun-
damental dynamical variables: the position ;r�t� and the momentum ;p�t�. Any other physical
quantity, relevant to the system, can be calculated in terms of these two dynamical variables.
In addition, knowing these variables at a time t , we can predict, using for instance Hamilton’s
equations dx�dt � "H�"p and dp�dt � �"H�"x , the values of these variables at any later
time t ).
The quantum mechanical counterparts to these ideas are specified by postulates, which

enable us to understand:

� how a quantum state is described mathematically at a given time t ,

� how to calculate the various physical quantities from this quantum state, and
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� knowing the system’s state at a time t , how to find the state at any later time t ); that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system
The state of any physical system is specified, at each time t , by a state vector �O�t�O in a Hilbert
space H; �O�t�O contains (and serves as the basis to extract) all the needed information about
the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators
To every physically measurable quantity A, called an observable or dynamical variable, there
corresponds a linear Hermitian operator 
A whose eigenvectors form a complete basis.

Postulate 3: Measurements and eigenvalues of operators
The measurement of an observable A may be represented formally by the action of 
A on a state
vector �O�t�O. The only possible result of such a measurement is one of the eigenvalues an
(which are real) of the operator 
A. If the result of a measurement of A on a state �O�t�O is an ,
the state of the system immediately after the measurement changes to �OnO:


A�O�t�O � an�OnO� (3.1)

where an � NOn�O�t�O. Note: an is the component of �O�t�O when projected1 onto the eigen-
vector �OnO.

Postulate 4: Probabilistic outcome of measurements

� Discrete spectra: When measuring an observable A of a system in a state �OO, the proba-
bility of obtaining one of the nondegenerate eigenvalues an of the corresponding operator

A is given by

Pn�an� �
�NOn�OO�2

NO�OO
�
�an�2

NO �OO
� (3.2)

where �OnO is the eigenstate of 
Awith eigenvalue an . If the eigenvalue an ism-degenerate,
Pn becomes

Pn�an� �
3m
j�1 �NO

j
n �OO�2

NO �OO
�
3m
j�1 �a

� j�
n �2

NO �OO
� (3.3)

The act of measurement changes the state of the system from �OO to �OnO. If the sys-
tem is already in an eigenstate �OnO of 
A, a measurement of A yields with certainty the
corresponding eigenvalue an : 
A�OnO � an�OnO.

� Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of 
A yields a value be-
tween a and a � da on a system which is initially in a state �OO:

dP�a�
da

�
�O�a��2

NO �OO
�

�O�a��2
5�*
�* �O�a)��2da)

� (3.4)

for instance, the probability density for finding a particle between x and x � dx is given
by dP�x��dx � �O�x��2�NO �OO.

1To see this, we need only to expand �O�t�O in terms of the eigenvectors of 
A which form a complete basis: �O�t�O �3
n �OnONOn �O�t�O �

3
n an �OnO.
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(b) The number of systems that will be found in the state �M1O is

N1 � 810� P1 �
810

3
� 270� (3.16)

Likewise, the number of systems that will be found in states �M2O and �M3O are given, respec-
tively, by

N2 � 810� P2 �
810� 4
9

� 360� N3 � 810� P3 �
810� 2
9

� 180� (3.17)

3.4 Observables and Operators
An observable is a dynamical variable that can be measured; the dynamical variables encoun-
tered most in classical mechanics are the position, linear momentum, angular momentum, and
energy. How do we mathematically represent these and other variables in quantum mechanics?
According to the second postulate, a Hermitian operator is associated with every physical

observable. In the preceding chapter, we have seen that the position representation of the
linear momentum operator is given in one-dimensional space by 
P � �i �h"�"x and in three-
dimensional space by 
;P � �i �h ;V.
In general, any function, f �;r� ;p�, which depends on the position and momentum variables,

;r and ;p, can be "quantized" or made into a function of operators by replacing ;r and ;p with their
corresponding operators:

f �;r� ;p� �� F� 
;R� 
;P� � f � 
;R��i �h ;V�� (3.18)

or f �x� p�� F� 
X � �i �h"�"x�. For instance, the operator corresponding to the Hamiltonian

H �
1
2m

;p 2 � V �;r � t� (3.19)

is given in the position representation by


H � � �
h2

2m
V2 � V � 
;R� t�� (3.20)

where V2 is the Laplacian operator; it is given in Cartesian coordinates by: V2 � "2�"x2 �
"2�"y2 � "2�"z2.
Since the momentum operator 
;P is Hermitian, and if the potential V � 
;R� t� is a real function,

the Hamiltonian (3.19) is Hermitian. We saw in Chapter 2 that the eigenvalues of Hermitian
operators are real. Hence, the spectrum of the Hamiltonian, which consists of the entire set
of its eigenvalues, is real. This spectrum can be discrete, continuous, or a mixture of both. In
the case of bound states, the Hamiltonian has a discrete spectrum of values and a continuous
spectrum for unbound states. In general, an operator will have bound or unbound spectra in the
same manner that the corresponding classical variable has bound or unbound orbits. As for 
;R
and 
;P , they have continuous spectra, since r and p may take a continuum of values.
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where

p2
op C�x� �

6
i
 
�
�x 6 6i  

�
�xC�x� 7 � �62 

�2C

�x2

In classical mechanics, the total energy written in terms of the position and 
momentum variables is called the Hamiltonian function H � p2�2m � V . If we 
replace the momentum by the momentum operator pop and note that V � V(x), we 
obtain the Hamiltonian operator Hop:

 Hop �
p2

op

2m
� V�x� 6-51

The time-independent Schrödinger equation can then be written

 HopC � EC 6-52

The advantage of writing the Schrödinger equation in this formal way is that it 
allows for easy generalization to more complicated problems such as those with 
several particles moving in three dimensions. We simply write the total energy 
of the system in terms of position and momentum and replace the momentum vari-
ables by the appropriate operators to obtain the Hamiltonian operator for the 
system.

Table 6-1 summarizes the several operators representing physical quantities 
that we have discussed thus far and includes a few more that we will encounter 
later on.

 Table 6-1 Some quantum-mechanical operators

Symbol Physical quantity Operator

f(x)  Any function of x—the position x,
the potential energy V(x), etc.

f(x)

px x component of momentum
6
i
 
�
�x

py y component of momentum
6
i
 
�
�y

pz z component of momentum
6
i
 
�
�z

E Hamiltonian (time independent)
p2

op

2m
� V�x�

E Hamiltonian (time dependent) i6 
�
�t

Ek Kinetic energy �  
62

2m
 
�2

�x2

Lz z component of angular momentum � i6 
�
�F
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6-4 Expectation Values and Operators 
Expectation Values
The objective of theory is to explain experimental observations. In classical mechanics 
the solution of a problem is typically specified by giving the position of a particle or 
particles as a function of time. As we have discussed, the wave nature of matter pre-
vents us from doing this for microscopic systems. Instead, we find the wave function 
#(x, t) and the probability distribution function U #�x, t� U 2. The most that we can 
know about a particle’s position is the probability that a measurement will yield vari-
ous values of x. The expectation value of x is defined as

 �x� � )
� @

� @

#
�x, t�  x #�x, t�  dx 6-44

The expectation value of x is the average value of x that we would expect to obtain 
from a measurement of the positions of a large number of particles with the same wave 
function #(x, t). As we have seen, for a particle in a state of definite energy the proba-
bility distribution is independent of time. The expectation value of x is then given by

 �x� � )
� @

� @

C
�x�  x C�x�  dx 6-45

For example, for the infinite square well, we can see by symmetry (or by direct calcu-
lation) that �x� is L�2, the midpoint of the well.

In general, the expectation value of any function f(x) is given by

 �f�x� � � )
� @

� @

C
f�x�C dx 6-46

For example, �x2� can be calculated as above, for the infinite square well of width L. 
It is left as an exercise (see Problem 6-58) to show that

 �x2� �
L2

3
�  

L2

2n2P2 6-47

You may recognize the expectation values defined by Equations 6-45 and 6-46 as 
being weighted average calculations, borrowed by physics from probability and sta-
tistics. We should note that we don’t necessarily expect to make a measurement 
whose result equals the expectation value. For example, for even n, the probability of 
measuring x � L�2 in some range dx around the midpoint of the well is zero because 
the wave function sin�nPx�L� is zero there. We get �x� � L�2 because the proba-
bility density function C*C is symmetrical about that point. Remember that the expec-
tation value is the average value that would result from many measurements.

Operators
If we knew the momentum p of a particle as a function of x, we could calculate the 
expectation value ��p� from Equation 6-46. However, it is impossible in principle to 
find p as a function of x since, according to the uncertainty principle, both p and x 
cannot be determined at the same time. To find ��p�, we need to know the distribution 
function for momentum. If we know C(x), it can be found by Fourier analysis. The ��p� 
also can be found from Equation 6-48, where 4 6

i
 
�
�x 5  is the mathematical operator 

acting on # that produces the x component of the momentum (see also Equation 6-6).

TIPLER_06_229-276hr.indd   250 8/22/11   11:57 AM

250 Chapter 6 The Schrödinger Equation

6-4 Expectation Values and Operators 
Expectation Values
The objective of theory is to explain experimental observations. In classical mechanics 
the solution of a problem is typically specified by giving the position of a particle or 
particles as a function of time. As we have discussed, the wave nature of matter pre-
vents us from doing this for microscopic systems. Instead, we find the wave function 
#(x, t) and the probability distribution function U #�x, t� U 2. The most that we can 
know about a particle’s position is the probability that a measurement will yield vari-
ous values of x. The expectation value of x is defined as

 �x� � )
� @

� @

#
�x, t�  x #�x, t�  dx 6-44

The expectation value of x is the average value of x that we would expect to obtain 
from a measurement of the positions of a large number of particles with the same wave 
function #(x, t). As we have seen, for a particle in a state of definite energy the proba-
bility distribution is independent of time. The expectation value of x is then given by

 �x� � )
� @

� @

C
�x�  x C�x�  dx 6-45

For example, for the infinite square well, we can see by symmetry (or by direct calcu-
lation) that �x� is L�2, the midpoint of the well.

In general, the expectation value of any function f(x) is given by

 �f�x� � � )
� @

� @

C
f�x�C dx 6-46

For example, �x2� can be calculated as above, for the infinite square well of width L. 
It is left as an exercise (see Problem 6-58) to show that

 �x2� �
L2

3
�  

L2

2n2P2 6-47

You may recognize the expectation values defined by Equations 6-45 and 6-46 as 
being weighted average calculations, borrowed by physics from probability and sta-
tistics. We should note that we don’t necessarily expect to make a measurement 
whose result equals the expectation value. For example, for even n, the probability of 
measuring x � L�2 in some range dx around the midpoint of the well is zero because 
the wave function sin�nPx�L� is zero there. We get �x� � L�2 because the proba-
bility density function C*C is symmetrical about that point. Remember that the expec-
tation value is the average value that would result from many measurements.

Operators
If we knew the momentum p of a particle as a function of x, we could calculate the 
expectation value ��p� from Equation 6-46. However, it is impossible in principle to 
find p as a function of x since, according to the uncertainty principle, both p and x 
cannot be determined at the same time. To find ��p�, we need to know the distribution 
function for momentum. If we know C(x), it can be found by Fourier analysis. The ��p� 
also can be found from Equation 6-48, where 4 6

i
 
�
�x 5  is the mathematical operator 

acting on # that produces the x component of the momentum (see also Equation 6-6).

TIPLER_06_229-276hr.indd   250 8/22/11   11:57 AM

 6-4 Expectation Values and Operators 251

 �p� � )
� @

� @

#
4 6
i
 
�
�x5# dx 6-48

Similarly, �p2� can be found from�p2� � )
� @

� @

#
4 6
i
 
�
�x5 4 6i  

�
�x 5# dx

Notice that in computing the expectation value, the operator representing the physical 
quantity operates on #(x, t), not on #*(x, t); that is, its correct position in the integral 
is between #* and #. This is not important to the outcome when the operator is sim-
ply some f (x), but it is critical when the operator includes a differentiation, as in the 
case of the momentum operator. Note that ��p2� is simply 2mE since, for the infinite 

square well, E � p2�2m. The quantity 4 6
i
 
�
�x5 , which operates on the wave function 

in Equation 6-48, is called the momentum operator pop:

 pop �
6
i
 
�
�x 6-49

EXAMPLE 6-5 Expectation Values for p and p2  Find ��p� and ��p2� for the 
ground-state wave function of the infinite square well. (Before we calculate them, 
what do you think the results will be?)

SOLUTION
We can ignore the time dependence of #, in which case we have

 �p� � )
L

0

4� 2
L

 sin 
nx
L
5 4 6

i
 
�
�x5 4� 2

L
 sin 

nx
L
5  dx

 �
6
i
 
2
L

 
P

L )
L

0

 sin 
Px
L

 cos 
Px
L

 dx � 0

The particle is equally as likely to be moving in the �x as in the �x direction, so its 
average momentum is zero.

Similarly, since

 
6
i
 
�
�x4 6i  

�
�x 5C � �62 

�2C

�x2 � �624 �  
P2

L2� 2
L

 sin 
Px
L
5

 � �  
62P2

L2  C

we have �p2� �
62P2

L2 )
L

0

C
C dx �
62P2

L2

The time-independent Schrödinger equation (Equation 6-18) can be written conveniently 
in terms of pop:

 4 1
2m
5p2

op C�x� � V�x�C�x� � EC�x� 6-50
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