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Lecture 01:
INntroduction:

If we look around, all kinds of processes that are happening can be traced to be due to four
fundamental interactions. These interactions are strong and weak, dominant in subatomic
world and electromagnetic plus gravitational which dictate almost all phenomena at
macroscopic level. Most of the phenomena that we directly interact are electromagnetic in
origin. Ordinary pull or push, normal reaction on a book resting on a table, friction
experienced by a rolling object, tension in a rope that pulls a cart, forces generated by our
muscles are all electromagnetic in origin. Understanding of electromagnetic interactions
between current and charge distributions and their behaviour in the presence of fields is
technically called Classical Electrodynamics.

At deeper level classical electrodynamics is unified theory of electricity, magnetism and
optics which was shaped by Carl Maxwell through his beautiful equations famously called
Maxwell’s equations of electrodynamics. The impact of this theory was immense on future
developments in theoretical physics. Modern theories of physics like QFT, QCD and even
string theories ( An attempt of a unified theory of everything ) are actually extensions of
classical electrodynamics.

We start with brief introduction of electrostatics. Initially electrostatics, magnetism and
optics where separate subjects besides thermodynamics and mechanics. It was Maxwell’s
genius that we where able to crack symmetry and could understand nature in a better way.

Electrostatics (A brief introduction) : We begin with Coulomb’s law, experiments at classical
level reveal that the force between static charge distributions can be understood if we
assume force between two charged particles is directly proportional to product of charges
between the particles and inversely related with square of displacement between them. This
statement is called Coulomb’s law. Further it is also assumed that forces occur pairwise
(superposition principle). Mathematically we express this fact through the following equation
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Where ‘g’ and ‘q” are two point charges separated by displacement vector (r — r’). The
above equation is expressed interims of system of international units. The main draw back
of the above expression of force is that the interaction is instantaneous and is action at a

distance statement. This feature is ugly in any kind of theoretical structure as it implies
instantaneous transfer of information ( something that seems absurd).

F(r) =




The problem of action at a distance is addressed by introducing the concept of field. Fields
fill empty space between the charges and make interaction between two bodies local .i.e
the test charges are locally influenced by fields created by source charges. Initially Fields
where introduced to make interaction local as mathematical concepts but with progress of
our understanding fields turned out to be physical entities expressing physical reality of our
universe. Today we understand everything interns of fields, even mass is due to a field
called Higgs.

Electrostatic interaction is expressed interims of a vector field called electric field as
q'(r—r)
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In the presence of several source charges, the net field is vector sum of fields due to
individual charges. We write
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Incase of continuous charge distribution, we introduce electric charge density “p” located at
r" within volume V. Then the field for this kind of distribution is defined as
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The above expression for any distribution of charges including discrete charges for which
we use Dirac delta distribution

p(r) =) qi5(r' = 1)) @

If we insert equation (4) in equation (3), we recover equation (2). Now for the general
expression of electric field defined through equation (3), we take divergence and use
property of Dirac delta function, we obtain
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V.E(r) = ? (5)
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Equation (5) is differential form of Gauss law in electrostatics. Since curl of divergence is
zero for any field in R’ ( three dimensional ), we can easily write down

VXE(r) =0 6)

Thus we prove that electrostatic field is irrotational. A curl less field represents conservative
nature of force which defines the field.

Electrostatics can completely be described by two vector partial differential equations (5)
and (6). These represent four scaler equations. Since curl of electric field vanishes, because
in equation (3), we expressed electric filed interns of divergence of scaler function. We name

this scaler function as scaler potential and express it by V Hence we write

E(ry=-VV (7)
Inserting equation (7) in (6), we obtain
V2V = —p(7) )
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This second order differential equation turns out to be master equation of electrostatics
called Poisson’s equation. In regions devoid of charges, this equation reduces to Laplace
equation given as

V2V =0 9)

In the next lecture we will discuss electrostatic boundary conditions.



Lecture 02: Electrostatic Boundary conditions

Normally the problem of electrostatics is that we have some given charge distribution p(7)
and our job is to calculate Electric filed due to this static distribution. The approach is to first
look for symmetry that might allow to implement Gauss’s law. If we can not figure out a
simple symmetric Gaussian surface then we generally adopt procedure to calculate
potential first as intermediate step.

Thus there are three fundamental quantities

p(r), E and V. There are six relations that relate
these quantities depicted by this triangle which
originate from consideration of Coulomb’s law
and the principle of superposition - the
fundamental building blocks of electrostatics.

In the light of relations described in the above
triangle it is very easy to obtain variation of E
field across and parallel to a boundary sprayed

with surface charge density o as shown in the figure given below. We draw a pillbox
extending just across the surface. Now we write
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“A” is the area of pillbox lid. Since the sides of
pillbox contribute nothing to the flux and in the

limit as thickness ¢ — 0, we retain
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From equation (11) we conclude that the normal component of “E” is discontinuous by an

o
amount — at any boundary. In case there are no surface charges, then E field would be

€0
continuous.

The tangential component will always be continuous due to the fact that E- field is
conservative and follows
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To prove the continuity of tangential component of “E”, draw a rectangular loop of very small
width tending to zero as shownin figure. Implementing equation (12), we obtain

El  =FEl (13)
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The boundary conditions on “E” can be
combined into a single formula.
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Potential difference can be written as
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The internal will vanish as path length shrinks to zero, thus

Vabove = Vbelow (1 6)

Gradient of V will be discontinuous in accordance with equation (10), we write
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Thus what we have understood so far is that if a static charge distribution is given, we may
discover some symmetry in the distribution which would allow us to exploit Gauss law and
in case we could not solve the problem we will try to calculate potential first and workout
field. We do come across problems where even this step is challenging for instance

problems involving conductor p itself may not be known in advance as for conductors
charge can freely move around so one can only control net charge of a conductor. In these
problems the differential form of potential (Poisson equation) together with appropriate
boundary conditions allows us to evaluate the potential field and thus address complicated
problems of electrostatics.



Laplace equation:

If we distribute charge in some region but are interested to look at potential where no
charges are present, Poisson equation reduces to Laplace equation given by

VV=0: (19)

Problem 1: (D J Grifith- 3rd edition)

An infinitely log rectangular metal pipe (sides a and b) is grounded, but one end, at

x=0, is maintained at a specified potential Vo(x, y), v

as indicated in figure. Find the potential inside the ‘Z:lo

pipe. a -
Solution : Vo(y, 2) —|= | ﬂ
This is a three dimensional problem with Cartesian b t ‘} _
symmetry, therefore we attempt to solve the problem is V=0

Cartesian coordinates. Writing Laplace equation in Z
Cartesian form, we have

0’V 9%V 9%V
ox?  dy? 072

The given problem is subjected to following boundary conditions
i. V=0Wheny=0
ii. V=0Wheny=a
jiii. V=0Whenz=20
iv. V=0Whenz=>
v. V- 0Whenx — inf
vi. V=1V,(y,2) Whenx =0

In order to solve the given problem we look for solutions that satisfy the product assumption

V(x,y,2) = X(0)Y(y)Z(2) (21)



Substituting (21) in (20) and dividing by V, we get
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All terms in the above equation are functions of one independent variable. Therefore the only

way the above equation makes sense is that each term is individually is equal to some
constant and all the three constants sum up to zero. We say,
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Now the problem is that one may think that we can choose these constants arbitrarily
positive and negative to satisfy equation (24) but one has to be careful because our solution
has to satisfy boundary conditions, therefore we try many combinations and it turns out that
following choice is proper recipe

C, = — k?, C; = — I* which fixes C; = k* + [* and hence
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With the help of separation of variables, we have converted three dimensional partial
differential equation into three one dimensional ordinary differential equations. Solving
ordinary differential equations is straight forward and procedures are well understood.

Solving three equations in (25) independently we have following solutions

X(x) = AeVK +1 4 BV +17y
Y(y) = Csinky + Dcosky

Z(z) = Esinlz + Fcoslz

Implementing boundary conditions from (i) to (iv), requires A = 0,D = 0,F = 0 and
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k=— and [ = 7 , where n and m are positive integers. Combing the remaining
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constants, we are left with
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The above solution meets all boundary conditions except last one. General solution can be
expressed as double sum over n, m as
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Coefficients Cn,m can be determined by multiplying above equation (27) by
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Evaluating, we obtain
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Further, the above integral takes zero value for even n and m and for odd values integrals
16V,
converge to 0 , thus we obtain final solution as
m’nm
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V(x,y,2) = 0 Z VDTG oy sin | —— (30)
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Successive terms decrease rapidly, a good approximation can be obtained by keeping first
few terms only.

Home Assignment 1:

Write Mathematica code for visualisation of equation (30). Compare approximate solution.



Problems with spherical symmetry:

Laplace equation spherical coordinates takes the form
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If we assume problem to be having azimuthal symmetry ie potential is independent of

¢ coordinate, the above equation reduces to
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We again follow the method of separation of variables and assume that potential takes
product form

V(r,0) = R(r)©(0) (33)

Substituting (33) in (32), we obtain
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Then first term in the above equation is function of ‘r’ only and the second term is function

of @ only. Therefore , they must individually be equal to some constants whose sum will
vanish. For mathematical simplicity and convenance we choose
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Solving these ordinary differential equations, we have solution of the first equation as

B
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The solution of angular equation is a bit difficult. The solutions are Legendre polynomials in
the variable cos®.

O(0) = P/cos0) (36)

P/(x) is most conveniently defined by the Rodrigues formula:
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The first few Legendre polynomials are

Ppx) = 1

Pi(x) = x

P(x) = (Bx*—=1)/2

P3(x) = (5x3=3x)/2

Pix) = (35x%-30x2+3)/8
Ps(x) = (63x>—70x3+15x)/8

Rodrigues formula works only for nonnegative integer values of “[” . In case of azimuthal
symmetry, most general solution of Laplace equation is

B
V(r,0) = <Arl + —> P(cos0) (38)
pl+l
The general solution is linear combination of separable solutions
V(r,0) = Z Art+ i P/(cos0) (39)
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Problem 2: The potential V(@) is specified on the surface of a hollow sphere, of radius
R. Find the potential inside the sphere.

Solutions: In this case we choose B; = 0 because otherwise solution would become infinite
at r = 0, thus we are left with

V(r,0) = Z (Alrl) P(cos0) (40)
1=0

Now we impose that at r = R, the solution must match with value at boundary, so we have

V(R.0) = ) (AR') P(cost) = V(0) (41)
=0

Constants A, can easily be evaluated by using following properties of Legendre polynomials.
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Multiplying equation (41) by P,(cos@)sinf and integrating, we get
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Equation (40) represents solution of our problem with coefficients given by equation (42). All
we need to know is potential as function of 0.

Assignment: Try solving the problem for various forms of potential as function of 6, you
can begin with constant potential to see if our procedure is correct prescription.

Problem 3: The potential V|(0) is again specified on the surface of a sphere of radius
R , but this time we are asked to find the potential outside, assuming there is no
charge there.

Solution: In this case we choose A, ’s to be zero because the first term in general solution is
increasing with ‘r’ and would get infinity as r — o0, therefore we are left with
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Imposing the surface boundary condition, we have

V(R,0) = Z—Rm (cos0) = Vy(6) (44)
=0

Again multiplying with P;(cos@)sin6 and integrating, we obtain.
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For any potential as function of 8, we can solve for potential outside the sphere by fixing
constants through equation (45) and substituting in equation (43).



Assignment:

1. The potential at the surface of a sphere (radius R) is given by V|, = kcos30, where k
is a constant. Find the potential inside and outside the sphere, as well as the

surface charge density o(6) on the sphere. (Assume there's no charge inside or
outside the sphere.

2. Solve Laplace's equation by separation of variables in cylindrical coordinates,
assuming there is no dependence on z (cylindrical symmetry).

3. Find the potential outside an infinitely long metal pipe, of radius R, placed at right
angles to an otherwise uniform electric field E;. Find the surface charge induced
on the pipe.

Multipole Expansion:

Consider a localised charge distribution described by

charge density p(r’'). Let’s try to evaluate potential at

any arbitrary point P located at displacement “r” from

chosen origin “o0” as shown in figure.

We can divide the distribution into infinitesimal volume elements dt’. The potential at P due
to entire distribution is given by

V(r) =

r

[ 1 p(rdr’ (46)
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Using cosine law we have

I\ 2 ’
P =r4+ (") =2rr'cos® =r*|1+ (r_) -2 (r_) Ccos 9’:' :

r r



For points outside the distribution, € is much less than 1, therefore we can binomial expand
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The above expression can now be presented in terms of Legendre polynomials,
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Now the final expression for potential can now be written as
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