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Lecture 01:
INntroduction:

If we look around, all kinds of processes that are happening can be traced to be due to four
fundamental interactions. These interactions are strong and weak, dominant in subatomic
world and electromagnetic plus gravitational which dictate almost all phenomena at
macroscopic level. Most of the phenomena that we directly interact are electromagnetic in
origin. Ordinary pull or push, normal reaction on a book resting on a table, friction
experienced by a rolling object, tension in a rope that pulls a cart, forces generated by our
muscles are all electromagnetic in origin. Understanding of electromagnetic interactions
between current and charge distributions and their behaviour in the presence of fields is
technically called Classical Electrodynamics.

At deeper level classical electrodynamics is unified theory of electricity, magnetism and
optics which was shaped by Carl Maxwell through his beautiful equations famously called
Maxwell’s equations of electrodynamics. The impact of this theory was immense on future
developments in theoretical physics. Modern theories of physics like QFT, QCD and even
string theories ( An attempt of a unified theory of everything ) are actually extensions of
classical electrodynamics.

We start with brief introduction of electrostatics. Initially electrostatics, magnetism and
optics where separate subjects besides thermodynamics and mechanics. It was Maxwell’s
genius that we where able to crack symmetry and could understand nature in a better way.

Electrostatics (A brief introduction) : We begin with Coulomb’s law, experiments at classical
level reveal that the force between static charge distributions can be understood if we
assume force between two charged particles is directly proportional to product of charges
between the particles and inversely related with square of displacement between them. This
statement is called Coulomb’s law. Further it is also assumed that forces occur pairwise
(superposition principle). Mathematically we express this fact through the following equation
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Where ‘g’ and ‘q” are two point charges separated by displacement vector (r — r’). The
above equation is expressed interims of system of international units. The main draw back
of the above expression of force is that the interaction is instantaneous and is action at a

distance statement. This feature is ugly in any kind of theoretical structure as it implies
instantaneous transfer of information ( something that seems absurd). The problem of action
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at a distance is addressed by introducing the concept of field. Fields fill empty space
between the charges and make interaction between two bodies local .i.e the test charges
are locally influenced by fields created by source charges. Initially Fields where introduced
to make interaction local as mathematical concepts but with progress of our understanding
fields turned out to be physical entities expressing physical reality of our universe. Today we
understand everything interns of fields, even mass is due to a field called Higgs.

Electrostatic interaction is expressed interims of a vector field called electric field as
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In the presence of several source charges, the net field is vector sum of fields due to
individual charges. We write
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Incase of continuous charge distribution, we introduce electric charge density “p” located at
r" within volume V. Then the field for this kind of distribution is defined as
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The above expression for any distribution of charges including discrete charges for which
we use Dirac delta distribution

p(r) = Z gi8(r' = r)) @

If we insert equation (4) in equation (3), we recover equation (2). Now for the general
expression of electric field defined through equation (3), we take divergence and use
property of Dirac delta function, we obtain
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V.E(r) = ? (5)
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Equation (5) is differential form of Gauss law in electrostatics. Since curl of divergence is
zero for any field in R’ ( three dimensional ), we can easily write down

VXE(r) =0 6)

Thus we prove that electrostatic field is irrotational. A curl less field represents conservative
nature of force which defines the field.

Electrostatics can completely be described by two vector partial differential equations (5)
and (6). These represent four scaler equations. Since curl of electric field vanishes, because
in equation (3), we expressed electric filed interns of divergence of scaler function. We name

this scaler function as scaler potential and express it by V Hence we write
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Inserting equation (7) in (6), we obtain
V2V = —p(7) )
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This second order differential equation turns out to be master equation of electrostatics
called Poisson’s equation. In regions devoid of charges, this equation reduces to Laplace
equation given as

V2V =0 9)

In the next lecture we will discuss electrostatic boundary conditions.



Lecture 02: Electrostatic Boundary conditions

Normally the problem of electrostatics is that we have some given charge distribution p(7)
and our job is to calculate Electric filed due to this static distribution. The approach is to first
look for symmetry that might allow to implement Gauss’s law. If we can figure out a simple
symmetric Gaussian surface then we generally
adopt procedure to calculate potential first as
intermediate step.

Thus there are three fundamental quantities

p(r), E and V. There are six relations that relate
these quantities depicted by this triangle which
originate from consideration of Coulomb’s law
and the principle of superposition - the
fundamental building blocks of electrostatics.

In the light of relations described in the above
triangle it is very easy to obtain variation of E

field across and parallel to a boundary sprayed with surface charge density ¢ as shown in
the figure given below. We draw a pillbox extending just across the surface. Now we write

ﬂgE.da:g:ﬂ ............... (10)

€0 €0

“A” is the area of pillbox lid. Since the sides of
pillbox contribute nothing to the flux and in the

limit as thickness ¢ — 0, we retain
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From equation (11) we conclude that the normal component of “E” is discontinuous by an

o
amount — at any boundary. In case there are no surface charges, then E field would be
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continuous.

The tangential component will always be continuous due to the fact that E- field is
conservative and follows
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To prove the continuity of tangential component of “E”, draw a rectangular loop of very small
width tending to zero as shownin figure. Implementing equation (12), we obtain

El  =FEl (13)
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The boundary conditions on “E” can be
combined into a single formula.
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Potential difference can be written as
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The internal will vanish as path length shrinks to zero, thus
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Gradient of V will be discontinuous in accordance with equation (10), we write
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Thus what we have understood so far is that if a static charge distribution is given, we may
discover some symmetry in the distribution which would allow us to exploit Gauss law and
in case we could not solve the problem we will try to calculate potential first and workout
field. We do come across problems where even this step is challenging for instance

problems involving conductor p itself may not be known in advance as for conductors

charge can freely move around so one can only control net charge of a conductor. In these
problems the differential form of potential (Poisson equation) together with appropriate
boundary conditions allows us to evaluate the potential filed and thus address complicated
problems of electrostatics.

Laplace equation:

If we distribute charge in some region but are interested to look at potential where no
charges are present, Poisson equation reduces to Laplace equation given by
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Problem 1: (D J Grifith- 3rd edition)
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An infinitely log rectangular metal pipe (sides a and b) is grounded, but one end, at

x=0, is maintained at a specified potential Vo(x, y), v
as indicated in figure. Find the potential inside the \?=l0
pipe. a -
Solution : Vo(')', 7)) —|= 1/&
This is a three dimensional problem with Cartesian b t ‘\} U X
symmetry, therefore we attempt to solve the problem is V=0
Cartesian coordinates. Writing Laplace equation in Z
Cartesian form, we have
0’V 0’V 0’V
=0 (20)
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The given problem is subjected to following boundary conditions
i. V=0Wheny =20
ii. V=0Wheny=a
iii. V=0Whenz=20
iv. V=0Whenz=>,
v. V—> 0Whenx — inf

vi. V= "Vy(y,2) Whenx =0

In order to solve the given problem we look for solutions that satisfy the product assumption

V(x,y,2) = X()Y(y)Z(z)
Substituting (21) in (20) and dividing by V, we get

1 0°X 10*Y 10*2Z
—_ 4+ ——=0
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All terms in the above equation are functions of one independent variable. Therefore the only
way the above equation makes sense is that each term is individually is equal to some
constant and all the three constants sum up to zero. We say,
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Now the problem is that one may think that we can choose these constants arbitrarily
positive and negative to satisfy equation (24) but one has to be careful because our solution
has to satisfy boundary conditions, therefore we try many combinations and it turns out that
following choice is proper recipe

C, = — k?, C; = — I* which fixes C; = k* + [* and hence
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With the help of separation of variables, we have converted three dimensional partial
differential equation into three one dimensional ordinary differential equations. Solving
ordinary differential equations is straight forward and procedures are well understood.

Solving three equations in (25) independently we have following solutions
X(x) = AeVK' + 1 4 Be VK + 1y
Y(y) = Csinky + Dcosky

Z(z) = Esinlz + Fcoslz

Implementing boundary conditions from (i) to (iv), requires A = 0,D = 0,F = 0 and
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k=— and [ = 7 , Where n and m are positive integers. Combing the remaining
a

constants, we are left with
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The above solution meets all boundary conditions except last one. General solution can be
expressed as double sum over n, m as
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Coefficients Cn,m can be determined by multiplying above equation (27) by

a
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sin < > sin < P ) and implementing last boundary condition. On integrating both

Evaluating, we obtain
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Further, the above integral takes zero value for even n and m and for odd values integrals
16V,
converge to 0 , thus we obtain final solution as
mnm
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Successive terms decrease rapidly, a good approximation can be obtained by keeping first
few terms only.

Home Assignment 1:

Write Mathematica code for visualisation of equation (30). Compare approximate solutions.
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