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Lecture 01: 
Introduction:  

If we look around, all kinds of processes that are happening can be traced to be due to  four 
fundamental interactions. These interactions are strong and weak, dominant in subatomic 
world and electromagnetic plus gravitational which dictate almost all phenomena at 
macroscopic level. Most of the phenomena that we directly interact are electromagnetic in 
origin. Ordinary pull or push, normal reaction on a book resting on a table, friction 
experienced by a rolling object, tension in a rope that pulls a cart, forces generated by our 
muscles are all electromagnetic in origin. Understanding of electromagnetic interactions 
between current and charge distributions and their behaviour in the presence of fields is 
technically called Classical Electrodynamics. 


At deeper level classical electrodynamics is unified theory of electricity, magnetism and 
optics which was shaped by Carl Maxwell through his beautiful equations famously called 
Maxwell’s equations of electrodynamics. The impact of this theory was immense on future 
developments in theoretical physics. Modern theories of physics like QFT, QCD and even 
string theories ( An attempt of a unified theory of everything ) are actually extensions of 
classical electrodynamics. 


We start with brief introduction of electrostatics. Initially electrostatics, magnetism and 
optics where separate subjects besides thermodynamics and mechanics. It was Maxwell’s 
genius that we where able to crack symmetry and could understand nature in a better way. 


Electrostatics (A brief introduction) : We begin with Coulomb’s law,  experiments at classical 
level reveal that the force between static charge distributions can be understood if we 
assume force between two charged particles is directly proportional to product of charges 
between the particles and inversely related with square of displacement between them. This 
statement is called Coulomb’s law. Further it is also assumed that forces occur pairwise 
(superposition principle). Mathematically we express this fact through the following equation


                                                


                                                        


Where ‘ ’  and  ‘ ’ are two point charges separated by displacement vector ( ). The 
above equation is expressed interims of system of international units. The main draw back 
of the above expression of force is that the interaction is instantaneous and is action at a 
distance statement. This feature is ugly in any kind of theoretical structure as it implies 
instantaneous transfer of information ( something that seems absurd). The problem of action 

F(r) =
qq′ (r − r′ )

4πϵ0 |r − r′ |3

=
−qq′ 

4πϵ0
∇( 1

|r − r′ | )
q q′ r − r′ 



at a distance is addressed by introducing the concept of field. Fields fill empty space 
between the charges and make interaction between two bodies local .i.e the test charges 
are locally influenced by fields created by source charges. Initially Fields where introduced  
to make interaction local as mathematical concepts but with progress of our understanding 
fields turned out to be physical entities expressing physical reality of our universe. Today we 
understand everything interns of fields, even mass is due to a field called Higgs.  


Electrostatic interaction is expressed interims of a vector field called electric field as 
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In the presence of several source charges, the net field is vector sum of fields due to 
individual charges. We write 
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Incase of continuous charge distribution, we introduce electric charge density “ ” located at 
 within volume . Then the field for this kind of distribution is defined as 
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The above expression for any distribution of charges including discrete charges for which 
we use Dirac delta distribution
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If we insert equation (4) in equation (3), we recover equation (2).  Now for the general 
expression of electric field defined through equation (3), we take divergence and use 
property of Dirac delta function, we obtain 
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Equation (5) is differential form of Gauss law in electrostatics. Since curl of divergence is 
zero for any field in  ( three dimensional ), we can easily write down
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Thus we prove that electrostatic field is irrotational. A curl less field represents conservative 
nature of force which defines the field. 


Electrostatics can completely be described by two vector partial differential equations (5) 
and (6). These represent four scaler equations. Since curl of electric field vanishes, because 
in equation (3), we expressed electric filed interns of divergence of scaler function. We name 
this scaler function as scaler potential and express it by V Hence we write 
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Inserting equation (7) in (6), we obtain
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This second order differential equation turns out to be master equation of electrostatics 
called Poisson’s equation. In regions devoid of charges,  this equation reduces to Laplace 
equation given as
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In the next lecture we will discuss electrostatic boundary conditions.
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Lecture 02: Electrostatic Boundary conditions 

Normally the problem of electrostatics is that we have some given charge distribution  
and our job is to calculate Electric filed due to this static distribution. The approach is to first 
look for symmetry that might allow to implement Gauss’s law. If we can figure out a simple 
symmetric Gaussian surface then we generally 
adopt procedure  to calculate potential first as 
intermediate step. 


 Thus there are three fundamental quantities 
, E and V. There are six relations that relate 

these quantities depicted by this triangle which 
originate from consideration of Coulomb’s law 
and the principle of superposition - the 
fundamental building blocks of electrostatics.


In the light of relations described in the above 
triangle it is very easy to obtain variation of E 
field across and parallel to a boundary sprayed with surface charge density   as shown in 
the figure given below. We draw a pillbox extending just across the surface. Now we write


            ……………     (10)


“A” is the area of pillbox lid. Since the sides of 
pillbox contribute nothing to the flux and in the 
limit as thickness , we retain


           ………………   (11)


From equation (11) we conclude that the normal component of “E” is discontinuous by an 
amount  at any boundary. In case there are no surface charges, then E field would be 

continuous.


 The tangential component will always be continuous due to the fact that E- field is 
conservative and follows 


ρ(r)

ρ(r)

σ

∮s
E . da =

Q
ϵ0

=
σA
ϵ0

ϵ → 0

E⊥
above − E⊥

below =
σ
ϵ0

σ
ϵ0



                                                                                                                          (12)


To prove the continuity of tangential component of “E”, draw a rectangular loop of very small 
width tending to zero as shownin figure.  Implementing equation (12), we obtain


       ……………………… (13)


The boundary conditions on “E” can be 
combined into a single formula.


   …………………(14)


Potential difference can be written as 
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The internal will vanish as path length shrinks to zero, thus
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Gradient of V will be discontinuous in accordance with equation (10), we write
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Thus what we have understood so far is that if a static  charge distribution is given, we may 
discover some symmetry in the distribution which would allow us to exploit Gauss law and 
in case we could not solve the problem we will try to calculate potential first and workout 
field. We do come across problems where even this step is challenging for instance 
problems involving conductor  itself may not be known in advance as for conductors 
charge can freely move around so one can only control net charge of a conductor. In these 
problems the differential form of potential (Poisson equation) together with appropriate    
boundary conditions allows us to evaluate the potential filed and thus address complicated 
problems of electrostatics.


Laplace equation: 
If we distribute charge in some region but are interested to look at potential where no 
charges are present, Poisson equation reduces to Laplace equation given by
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Problem 1: (D J Grifith- 3rd edition) 

An infinitely log rectangular metal pipe (sides a and b) is grounded, but one end, at 

x=0, is maintained at a specified potential , 
as indicated in figure. Find the potential inside the 
pipe. 

Solution : 

This is a three dimensional problem with Cartesian 
symmetry, therefore we attempt to solve the problem is 
Cartesian coordinates. Writing Laplace equation in 
Cartesian form, we have 
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The given problem is subjected to following boundary conditions


i.  When 


ii.  When 


iii.  When 


iv.  When 


v.  When 


vi.  When 


In order to solve the given problem we look for solutions that satisfy the product assumption            
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Substituting (21) in (20) and dividing by V, we get
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All terms in the above equation are functions of one independent variable. Therefore the only 
way the above equation makes sense is that each term is individually is equal to some 
constant and all the three constants sum up to zero. We say,
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 With 
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Now the problem is that one may think that we can choose these constants arbitrarily 
positive and negative to satisfy equation (24) but one has to be careful because our solution 
has to satisfy boundary conditions, therefore we try many combinations and it turns out that 
following choice is proper recipe 


                    which fixes  and hence
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With the help of separation of variables, we have converted three dimensional partial 
differential equation into three one dimensional ordinary differential equations. Solving 
ordinary differential equations is straight forward and procedures are well understood. 


Solving three equations in (25) independently we have following solutions


                            

                       

    

    Implementing boundary conditions from (i) to (iv), requires  and 


 and  , where n and m are positive integers. Combing the remaining 

constants, we are left with
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The above solution meets all boundary conditions except last one. General solution can be 
expressed as double sum over n, m as 
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    Coefficients  can be determined by multiplying above equation (27) by

, and implementing last boundary condition. On integrating both 

sides we get
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Evaluating, we obtain 


                                                (29)


Further, the above integral takes zero value for even n and m and for odd values integrals 

converge to  , thus we obtain final solution as


                   (30)


Successive terms decrease rapidly, a good approximation can be obtained by keeping first 
few terms only.


Home Assignment 1: 

Write Mathematica code for visualisation of equation (30). Compare approximate solutions.  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