a. Sample root locus, showing possible design point via gain adjustment (*A*) and desired design point that cannot be met via simple gain adjustment (*B*);
b. responses from poles at *A* and *B*

Figure 9.2 Compensation techniques: a. cascade; b. feedback

Figure 9.3 Pole at *A* is: **a.** on the root locus without compensator; **b.** not on the root locus with compensator pole added; *(figure continues)*

c. approximately on the root locus with compensator pole and zero added

Figure 9.3

(continued)

Figure 9.4 Closed-loop system for Example 9.1: a. before compensation; b. after ideal integral compensation

Figure 9.5 Root locus for uncompensated system of Figure 9.4(*a*)

Figure 9.6 Root locus for compensated system of Figure 9.4(b)

Ideal integral compensated system response and the uncompensated system response of Example 9.1

Figure 9.8 PI controller

a. Type 1 uncompensated system;
b. Type 1 compensated system;
c. compensator pole-zero plot

Root locus:

- a. before lag compensation;
- b. after lag compensation

Figure 9.11 Compensated system for Example 9.2

Figure 9.12 Root locus for compensated system of Figure 9.11

Table 9.1

Predicted characteristics of uncompensated and lagcompensated systems for Example 9.2

Parameter	Uncompensated	Lag-compensated	
Diant and common star	K	K(s + 0.111)	
Plant and compensator	(s+1)(s+2)(s+10)	$\overline{(s+1)(s+2)(s+10)(s+0.01)}$	
Κ	164.6	158.1	
K_p	8.23	87.75	
$e(\infty)$	0.108	0.011	
Dominant second-			
order poles	$-0.694 \pm j3.926$	$-0.678 \pm j3.836$	
Third pole	-11.61	-11.55	
Fourth pole	None	-0.101	
Zero	None	-0.111	

Step responses of uncompensated and lag-compensated systems for Example 9.2

Step responses of the system for Example 9.2 using different lag compensators

Using ideal derivative compensation: **a.** uncompensated; **b.** compensator zero at –2; (figure continues)

Figure 9.15 (*continued*) c. compensator zero at -3; d. compensator zero at - 4

Uncompensated system and ideal derivative compensation solutions from Table 9.2

Table 9.2Predicted characteristics for the systems of Figure9.15

	Uncompensated	Compensation b	Compensation c	Compensation d
Plant and compensator	$\frac{K}{(s+1)(s+2)(s+5)}$	$\frac{K(s+2)}{(s+1)(s+2)(s+5)}$	$\frac{K(s+3)}{(s+1)(s+2)(s+5)}$	$\frac{K(s+4)}{(s+1)(s+2)(s+5)}$
Dom. poles	$-0.939 \pm j2.151$	$-3 \pm j6.874$	$-2.437 \pm j5.583$	$-1.869 \pm j4.282$
Κ	23.72	51.25	35.34	20.76
ζ	0.4	0.4	0.4	0.4
ω_n	2.347	7.5	6.091	4.673
%OS	25.38	25.38	25.38	25.38
T_s	4.26	1.33	1.64	2.14
T_p	1.46	0.46	0.56	0.733
K_p	2.372	10.25	10.6	8.304
$e(\infty)$	0.297	0.089	0.086	0.107
Third pole	-6.123	None	-3.127	-4.262
Zero	None	None	-3	-4
Comments	Second-order approx. OK	Pure second- order	Second-order approx. OK	Second-order approx. OK

Figure 9.17 Feedback control system for Example 9.3

Root locus for uncompensated system shown in Figure 9.17

Table 9.3Uncompensated and compensated system characteristicsfor Example 9.3

	Uncompensated	Simulation	Compensated	Simulation
Plant and compensator	$\frac{K}{s(s+4)(s+6)}$		$\frac{K(s+3.006)}{s(s+4)(s+6)}$	
Dominant poles	$-1.205 \pm j2.064$		$-3.613 \pm j6.193$	
K	43.35		47.45	
ζ	0.504		0.504	
ω_n	2.39		7.17	
%OS	16	14.8	16	11.8
T_s	3.320	3.6	1.107	1.2
T_p	1.522	1.7	0.507	0.5
K_{ν}	1.806		5.94	
$e(\infty)$	0.554		0.168	
Third pole	-7.591		-2.775	
Zero	None		-3.006	
Comments	Second-order approx. OK		Pole-zero not canceling	

Compensated dominant pole superimposed over the uncompensated root locus for Example 9.3

Figure 9.20 Evaluating the location of the compensating zero for Example 9.3

Figure 9.21 Root locus for the compensated system of Example 9.3

Uncompensated and compensated system step responses of Example 9.3

Figure 9.23 PD controller

Figure 9.24 Geometry of lead compensation

Figure 9.25 Three of the infinite possible lead compensator solutions

Lead compensator design, showing evaluation of uncompensated and compensated dominant poles for Example 9.4

	Uncompensated	Compensation a	Compensation b	Compensation c
Plant and compensator	$\frac{K}{s(s+4)(s+6)}$	$\frac{K(s+5)}{s(s+4)(s+6)(s+42.96)}$	$\frac{K(s+4)}{s(s+4)(s+6)(s+20.09)}$	$\frac{K(s+2)}{s(s+4)(s+6)(s+8.971)}$
Dominant poles	$-1.007 \pm j2.627$	$-2.014 \pm j5.252$	$-2.014 \pm j5.252$	$-2.014 \pm j5.252$
Κ	63.21	1423	698.1	345.6
ζ	0.358	0.358	0.358	0.358
ω_n	2.813	5.625	5.625	5.625
% <i>OS</i> *	30 (28)	30 (30.7)	30 (28.2)	30 (14.5)
T_s^*	3.972 (4)	1.986 (2)	1.986 (2)	1.986 (1.7)
T_p^*	1.196 (1.3)	0.598 (0.6)	0.598 (0.6)	0.598 (0.7)
K_{v}	2.634	6.9	5.791	3.21
$e(\infty)$	0.380	0.145	0.173	0.312
Other poles	-7.986	-43.8, -5.134	-22.06	-13.3, -1.642
Zero	None	-5	None	-2
Comments	Second-order approx. OK	Second-order approx. OK	Second-order approx. OK	No pole-zero cancellation

Table 9.4 Comparison of lead compensation designs for Example 9.4

* Simulation results are shown in parentheses.

Table 9.4

Comparison of lead compensation designs for Example 9.4

Figure 9.27 s-plane picture used to calculate the location of the compensator pole for Example 9.4

X =Closed-loop pole X =Open-loop pole

Note: This figure is not drawn to scale.

Figure 9.28 Compensated system root locus

Note: This figure is not drawn to scale.

Figure 9.29 Uncompensated system and lead compensation responses for Example 9.4

Figure 9.31 Uncompensated feedback control system for Example 9.5

Figure 9.32 Root locus for the uncompensated system of Example 9.5

 $\mathbf{X} = \text{Open-loop pole}$

Table 9.5Predicted characteristics of uncompensated, PD- , and PID-compensated systems of Example 9.5

	Uncompensated	PD-compensated	PID-compensated
Plant and compensator	$\frac{K(s+8)}{(s+3)(s+6)(s+10)}$	$\frac{K(s+8)(s+55.92)}{(s+3)(s+6)(s+10)}$	$\frac{K(s+8)(s+55.92)(s+0.5)}{(s+3)(s+6)(s+10)s}$
Dominant poles	$-5.415 \pm j10.57$	$-8.13 \pm j15.87$	$-7.516 \pm j14.67$
K	121.5	5.34	4.6
ζ	0.456	0.456	0.456
ω_n	11.88	17.83	16.49
% <i>OS</i>	20	20	20
T_s	0.739	0.492	0.532
T_p	0.297	0.198	0.214
, K _p	5.4	13.27	∞
$e(\infty)$	0.156	0.070	0
Other poles	-8.169	-8.079	-8.099, -0.468
Zeros	-8	-8, -55.92	-8, -55.92, -0.5
Comments	Second-order approx. OK	Second-order approx. OK	Zero at -55.92 and -0.5 not canceled

Figure 9.33 Calculating the PD compensator zero for Example 9.5

X = Closed-loop pole

Note: This figure is not drawn to scale.

Figure 9.34 Root locus for PD-compensated system of Example 9.5

Note: This figure is not drawn to scale.

Step responses for uncompensated, PD-compensated, and PID-compensated systems of Example 9.5

Figure 9.36 Root locus for PIDcompensated system of Example 9.5

Note: This figure is not drawn to scale.

Figure 9.37 Uncompensated system for Example 9.6

Figure 9.38 Root locus for uncompensated system of Example 9.6

Table 9.6

Predicted characteristics of uncompensated, leadcompensated, and lag-lead- compensated systems of Example 9.6

	Uncompensated	Lead-compensated	Lag-lead-compensated
Plant and compensator	$\frac{K}{s(s+6)(s+10)}$	$\frac{K}{s(s+10)(s+29.1)}$	$\frac{K(s+0.04713)}{s(s+10)(s+29.1)(s+0.01)}$
Dominant poles	$-1.794 \pm j3.501$	$-3.588 \pm j7.003$	$-3.574 \pm j6.976$
K	192.1	1977	1971
ζ	0.456	0.456	0.456
ω_n	3.934	7.869	7.838
%OS	20	20	20
T_s	2.230	1.115	1.119
T_p	0.897	0.449	0.450
K_{v}	3.202	6.794	31.92
$e(\infty)$	0.312	0.147	0.0313
Third pole	-12.41	-31.92	-31.91, -0.0474
Zero	None	None	-0.04713
Comments	Second-order approx. OK	Second-order approx. OK	Second-order approx. OK

Evaluating the compensator pole for Example 9.6

Root locus for lead-compensated system of Example 9.6

Figure 9.41 Root locus for lag-leadcompensated system of Example 9.6

Improvement in step response for lag-leadcompensated system of Example 9.6

Figure 9.43 Improvement in ramp response error for the system of Example 9.6: a. lead-compensated; b. lag-leadcompensated

a. Root locus
before cascading notch filter;
b. typical
closed-loop
step response
before cascading notch filter;

(continued)
c. pole-zero plot
of a notch filter;
d. root locus after
cascading notch filter;
e. closed-loop step
response after cascading
notch filter.

Function	Compensator	Transfer function	Characteristics
Improve steady-state error	PI	$K\frac{s+z_c}{s}$	 Increases system type. Error becomes zero. Zero at -z_c is small and negative. Active circuits are required to implement.
Improve steady-state error	Lag	$K\frac{s+z_c}{s+p_c}$	 Error is improved but not driven to zero. Pole at -p_c is small and negative. Zero at -z_c is close to, and to the left of, the pole at -p_c. Active circuits are not required to implement.
Improve transient response	PD	$K(s+z_c)$	 Zero at -z_c is selected to put design point on root locus. Active circuits are required to implement. Can cause noise and saturation; implement with rate feedback or with a pole (lead).
Improve transient response	Lead	$K\frac{s+z_c}{s+p_c}$	 Zero at -z_c and pole at -p_c are selected to put design point on root locus. Pole at -p_c is more negative than zero at -z_c. Active circuits are not required to implement.

Table 9.7 Types of cascade compensators

Table 9.7

Types of cascade compensators (continued on next slide)

Function	Compensator	Transfer function	Characteristics
Improve steady-state error and transient response	PID	$K\frac{(s+z_{\text{lag}})(s+z_{\text{lead}})}{s}$	 Lag zero at -z_{lag} and pole at origin improve steady-state error. Lead zero at -z_{lead} improves transient response. Lag zero at -z_{lag} is close to, and to the left of, the origin. Lead zero at -z_{lead} is selected to put design point on root locus.
			5. Active circuits required to implement.6. Can cause noise and saturation; implement with rate feedback or with an additional pole.
Improve steady-state error and transient response	Lag-lead	$K\frac{(s+z_{\text{lag}})(s+z_{\text{lead}})}{(s+p_{\text{lag}})(s+p_{\text{lead}})}$	 Lag pole at -p_{lag} and lag zero at -z_{lag} are used to improve steady-state error. Lead pole at -p_{lead} and lead zero at -z_{lead} are used to improve transient response. Lag pole at -p_{lag} is small and negative. Lag zero at -z_{lag} is close to, and to the left of, lag pole at -p_{lag}. Lead zero at -z_{lead} and lead pole at -p_{lead} are selected to put design point on root locus. Lead pole at -p_{lead}. Active circuits are not required to implement.

Table 9.7 Types of cascade compensators

Table 9.7

Types of cascade compensators (continued)

Figure 9.45 Generic control system with feedback compensation

A position control system that uses a tachometer as a differentiator in the feedback path. Can you see the similarity between this system and the schematic on the front end papers?

Photo by Mark E. Van Dusen.

- a. Transfer function of a tachometer;
- b. tachometer feedback compensation

(b)

Figure 9.48 Equivalent block diagram of Figure 9.45

(b)

R(s)

Figure 9.49

a. System for Example 9.7;
b. system with rate feedback compensation;
c. equivalent compensated system;
d. equivalent compensated system, showing unity feedback

Control Systems Engineering, Fourth Edition by Norman S. Nise Copyright © 2004 by John Wiley & Sons. All rights reserved.

C(s)

 $\frac{K_1}{s(s+5)(s+15)}$

 $K_{f}s$

Figure 9.45 Generic control system with feedback compensation

A position control system that uses a tachometer as a differentiator in the feedback path. Can you see the similarity between this system and the schematic on the front end papers?

Photo by Mark E. Van Dusen.

- a. Transfer function of a tachometer;
- b. tachometer feedback compensation

(b)

Figure 9.48 Equivalent block diagram of Figure 9.45

(b)

R(s)

Figure 9.49

a. System for Example 9.7;
b. system with rate feedback compensation;
c. equivalent compensated system;
d. equivalent compensated system, showing unity feedback

Control Systems Engineering, Fourth Edition by Norman S. Nise Copyright © 2004 by John Wiley & Sons. All rights reserved.

C(s)

 $\frac{K_1}{s(s+5)(s+15)}$

 $K_{f}s$