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Fourier Series

7.1 INTRODUCTION

We have seen in Chapter 1 that nonhomogeneous differential equations with constant coeffi-
cients containing sinusoidal input functions (e.g., A sin wt) can be solved quite easily for any
input frequency w. There are many examples, however, of periodic input functions that are not
sinusoidal. Figure 7.1 illustrates four common ones. The voltage input to a circuit or the force
on a spring—mass system may be periodic but possess discontinuities such as those illustrated.
The object of this chapter is to present a technique for solving such problems and others con-
nected to the solution of certain boundary-value problems in the theory of partial differential
equations.
The technique of this chapter employs series of the form

o0
ao nmt . nmt
— , COS —— + b, sin —— 7.1.1
2 +;(“ Tt T ) @.1.1)

the so-called trigonometric series. Unlike power series, such series present many pitfalls and
subtleties. A complete theory of trigonometric series is beyond the scope of this text and most
works on applications of mathematics to the physical sciences. We make our task tractable by
narrowing our scope to those principles that bear directly on our interests.

Let f(¢) be sectionally continuous in the interval —T < ¢ < T so that in this interval f(¢)
has at most a finite number of discontinuities. At each point of discontinuity the right- and left-
hand limits exist; that is, at the end points —7 and T of the interval —T <t < T we define

o J®

" " W

Figure 7.1 Some periodic input functions.
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414 CHAPTER 7 / FOURIER SERIES

f(=T%) and f(T™) as limits from the right and left, respectively, according to the following

expressions:
FTH = lim £, fT7)=lim f@©) (7.12)
t>-T t<T

and insist that f(—7) and f (T ™) exist also. Then the following sets of Fourier coefficients of
f@)in =T <t < T exist:

1 T
@ = ?/Jf(t) dr
1 /7 nmt
i nrt 7.13
a T/Jf(t)cos T dt ( )

by

1 (T t
;/Jf(t)sin%dt, n=1.23...

The trigonometric series 7.1.1, defined by using these coefficients, is the Fourier series expan-
sionof f(¢)in —T <t < T. In this case we write

ni nmwt

> t
f@) ~ % + ; (an cos T + b, sin T) (7.1.4)

This representation means only that the coefficients in the series are the Fourier coefficients of
f(t) as computed in Eq. 7.1.3. We shall concern ourselves in the next section with the question
of when “~” may be replaced with “="; conditions on f(#) which are sufficient to permit this
replacement are known as Fourier theorems.

We conclude this introduction with an example that illustrates one of the difficulties under
which we labor. In the next section we shall show that f(¢) = ¢, —w <t < 7 has the Fourier
series representation

0 (_1)n+1 )
t=2 E ———— sin nt (7.1.5)
n
n=1

where the series converges for all #, —7 <t < 7. Now f’(¢) = 1. But if we differentiate the
series 7.1.5 term by term, we obtain

00
23 (1" cos nt (7.1.6)
n=1
which diverges in —m < t < 7 since the nth term, (—i)"*! cos nt, does not tend to zero as n
tends to infinity. Moreover, it is not even the Fourier series representation of f'(t) = 1. This is
in sharp contrast to the “nice” results we are accustomed to in working with power and
Frobenius series.
In this chapter we will use Maple commands from Appendix C, assume from Chapter 3, and
dsolve from Chapter 1. New commands include: sum and simplify/trig.

7.1.1 Maple Applications

It will be useful to compare a function to its Fourier series representation. Using Maple, we can
create graphs to help us compare. For example, in order to compare Eq. 7.1.5 with f(¢) = t, we
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can start by defining a partial sum in Maple:

>fs:= (N, t)

fs :=

-> sum(2*(-1) " (n+1)* sin(n*t)/n,

N 9 m+1) o2
(N,t)—>Z<2< 1) nsnl(n t))
n=1

n=1..N);

In this way, we can use whatever value of N we want and compare the Nth partial sum with the

function f(¢):

>plot ({fs (4, t), t}, £t=-5..5);
4Ak
zak
-4 | -2 0 2 4 !
72Ak
74Ak

Observe that the Fourier series does a reasonable job of approximating the function only on the
interval —m < t < m. We shall see why this is so in the next section.

Problems

1 [ [

1. (a) What is the Fourier representation of f(r) =1,
T <t<m?
(b) Use Maple to create a graph of f(#) and a partial

Fourier series.

2. Verity the representation, Eq. 7.1.5, by using Egs. 7.1.3
and 7.1.4.

3. Does the series (Eq. 7.1.5) converge if ¢ is exterior to
—n <t<mw?Att=mn?Att = —n? To what values?

4. Show that the Fourier series representation given as
Eq. 7.1.4 may be written

1 T
fO~ 5 ﬁ o

00 T
+%Z/J f(s)cosnTm(s—z)dt

n=1

5. Explain how
g _q L.t 1,
4 35 17
follows from Eq. 7.1.5. Hint: Pick t = /2. Note that

this result also follows from

1 oo X
tan- x=x— —+ — — — +---, —-l<x<l1
3 * 5 7 + -
6. What is the Fourier series expansion of f(¢) = —1,
T <t<T?

7. Create a graph of tan~! x and a partial sum, based on the
equation in Problem 5.

8. One way to derive Eqs. 7.1.3 is to think in terms of a least
squares fit of data (see Section 5.4). In this situation, we
let g(¢) be the Fourier series expansion of f(¢), and we
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strive to minimize:

T
/ O =0 dr

(a) Explain why this integral can be thought of as a func-
tion of ay, a1, az, etc., and by, by, etc.

(b) Replace g(¢) in the above integral with a; cos(”?’),
creating a function of just a;. To minimize this func-
tion, determine where its derivative is zero, solving
for a;. (Note that it is valid in this situation to switch
the integral with the partial derivative.)

(c) Use the approach in part (b) as a model to derive all
the equations in Egs. 7.1.3.

Computer Laboratory Activity: In Section 5.3 in
Chapter 5, one problem asks for a proof that for any
vectors y and u (where u has norm 1), the projection of

7.2 A FOURIER THEOREM

the vector y in the direction of u can be computed by
(u-y)u. We can think of sectionally continuous func-
tions f(¢r) and g(¢), in the interval —7 <t < T, as
vectors, with an inner (dot) product defined by

T
o= [ rosoa
and a norm defined by

Al =V{f )

.. . nmwt . nmt

(a) Divide the functions 1, cos al and sin T by
appropriate constants so that their norms are 1.

(b) Derive Egs. 7.1.3 by computing the projections of

. L nmw . nmt
f(¢) in the “directions” of 1, cos T and sin T

As we have remarked in the introduction, we shall assume throughout this chapter that f(¢) is
sectionally continuous in —7 < t < T. Whether f(¢) is defined at the end points —7 or T or
defined exterior! to (—7, T) is a matter of indifference. For if the Fourier series of f(t) con-
verges to f(¢) in (—T, T) it converges almost everywhere since it is periodic with period 27.
Hence, unless f(¢) is also periodic, the series will converge, not to f(¢), but to its “periodic
extension.” Let us make this idea more precise. First, we make the following stipulation:

(1) If 1y is a point of discontinuity of f(¢), —T < fy < T, then redefine f(t;), if necessary, so

that

fto) = 30f (1) + f)]

(7.2.1)

In other words, we shall assume that in (—7', 7') the function f(¢) is always the average of the
right- and left-hand limits at 7. Of course, if 7 is a point of continuity of f(¢), then
f (tT) = f(¢t7) and hence Eq. 7.2.1 is also true at points of continuity. The periodic extension

f () of f(¢) is defined

) @) = f@), —T<t<T (7.2.2)
3) f@t+2T)= f@t) forallt (7.2.3)
) F(D) = f(=T)=3f(-T" + f(T)] (7.2.4)

Condition (2) requires f (¢) and f(t) to agree on the fundamental interval (—T,T).
Condition (3) extends the definition of f(¢) so that f () is defined everywhere and is periodic
with period 27. Condition (4) is somewhat more subtle. Essentially, it forces stipulation (1)
(see Eq. 7.2.1) on f(t) at the points £nT (see Examples 7.2.1 and 7.2.2).

IThe notation (—7, T) means the set of t, —T < t < T. Thus, the exterior of (—7, T) means those t, ¢ > T or

t<-T.
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EXAMPLE 7.2.1

Sketch the periodic extension of f(¢) =t/m, —m <t < 7.

» Solution
In this example, f(7~) =1 and f(—7") = —1, so that f(n) = f(—n) = 0. The graph of f(t) follows.

Note that the effect of condition (4) (See Eq. 7.2.4) is to force f (#) to have the average of its values at all
t; in particular, f(nm) = f(—nm) = 0 for all n.

EXAMPLE 7.2.2 \ |

Sketch the periodic extension of f(t) = Ofort < 0, f(¢) = 1fort > 0, if the fundamental interval is (—1, 1).

f A
1
q % < b q
-1 1 2 !
» Solution
There are two preliminary steps. First, we redefine f(¢) at t = 0; to wit,
1+0 1
0 = — = —
1) 7 2
Second, since f(1) =1 and f(—1) = 0, we set
- 1+0 1

feh=Ffy=——=3

The graph of f(t) is as shown.
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A Fourier theorem is a set of conditions sufficient to imply the convergence of the Fourier se-
ries f(¢) to some function closely “related” to f(¢). The following is one such theorem.

Theorem 7.1: Suppose that f(t) and f'(t) are sectionally continuous in —T <t <T.Then
the Fourier series of f(t) converges to the periodic extension of f(t), that is, f(t), for all t.

We offer no proof for this theorem.2 Note, however, that the Fourier series for the functions
given in Examples 7.2.1 and 7.2.2 converge to the functions portrayed in the respective figures
of those examples. Thus, Eq. 7.1.4 with an equal sign is a consequence of this theorem.

There is another observation relevant to Theorem 7.1; in the interval — T <t < T,
f(t) = f(t). Thus, the convergence of the Fourier series of f(¢) isto f(¢) in (=7, T).

2 A proof is given in many textbooks on Fourier series.

Problems [ [1 [

The following sketches define a function in some interval 5.
—T <t < T. Complete the sketch for the periodic extension
of this function and indicate the value of the function at points
of discontinuity. |

1. —a a

|
1

1

2

Parabola

-1 1 Sketch the periodic extensions of each function.
-1, -7 <t<0
. & f(l):{ 1 O<t<m
sin /2 ’

9. fW)=t+1, —-m<t<m

t+n, —-mw<t<O0
—t + 7, O<t<m

- T ! 10. f(t) = {
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11. f(@t)=|sint|, —-w<t<m 19. f(t)=sin2t, —-m<t<m
2 fo=1. 0, —2<t<0 20. f(t)=tant, —7 <t<7%
sinwt/2,  0<t<2 21, f@)=t, —-1<r<1
—2
B3 fO =1 TSEsT 22. Explain why f(t) = 4/|t] is continuous in —1 < ¢ < 1
-1, —-l<t<-3 but f/(¢) is not sectionally continuous in this interval.
_ 1 1
W f0= 0, _§1< F<3 23. Explain why £ () = |t|3/? is continuous and f’(z) is also
I 5 <t< 1 continuous in —1 < ¢ < 1. Contrast this with Problem
22.
15. f)=1t], —-1<t<l1 ) ) )
24. Is In |tant/2| sectionally continuous in 0 <t < w/4?
0, -7 <t<0 Explain.
16. t) =
6 f® {sint, O<t<m 25. Is
- (-1, —1<t<0 f(t):{ln|tant/2|, O<e<|t|<m/4
VGRS B 0, 1] <€
18. f(t)=cost, —m<t<m sectionally continuous in 0 < ¢ < 7r/4? Explain.
7.3 THE COMPUTATION OF THE FOURIER COEFFICIENTS
7.3.1 Kronecker’s Method
We shall be faced with integrations of the type
X nmwx
x" cos A dx (7.3.1)

for various small positive integer values of k. This type of integration is accomplished by re-
peated integration by parts. We wish to diminish the tedious details inherent in such computa-
tions. So consider the integration-by-parts formula

f g0 f () dx = g(x) / £ dx — f [g/(x) / f(x)dx] dx (13.2)

Let
Fi(x) Z/f(x)dx

Fz(x)=/F1(x)dx
(7.3.3)

Fn(x) = / Fn—l(x)dx
Then Eq. 7.3.2 is

/g(x)f(X) dx = g(x)Fi(x) —/g/(X)Fl(X)dx (7.3.4)



420

CHAPTER 7 / FOURIER SERIES

from which
/ () f(x)dx = g(x)Fi(x) — g () Fa(x) + / g' () Fa(x)dx
follows by another integration by parts. This may be repeated indefinitely, leading to

/g(X)f(X) dx = g(x)Fi(x) — () F2(x) + §" () F3(x) +---

This is Kronecker’s method of integration.

Note that each term on the right-hand side of Eq.7.3.6 comes from the preceding term by dif-
ferentiation of the g function and an indefinite integration of the f function as well as an alterna-

tion of sign.

EXAMPLE 7.3.1 [ | |

Compute [ x cos nx dx.

» Solution

We integrate by parts (or use Kronecker’s method) as follows:

T x . . 1
xcosnxdx:—smnx‘ — 1| ——cosnx
_ n - n?

s

T

-7

1
=0+ —2(cosn7r —cosnm) =0
n

EXAMPLE 7.3.2 \ | |

Compute [” x?cosnx dx.

» Solution

For this example, we can integrate by parts twice (or use Kronecker’s method):

T x2 1 1 T
/ x2 cosnx dx —sinnx —2x | ——cosnx | +2 | —— sinnx
. n n? n3 n

2 4w
— (wcosnmw +mcosnm) = —(=1)"
n n
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EXAMPLE 7.3.3
Use Kronecker’s method and integrate f e* cos ax dx.

» Solution

Let g(x) = e*. Then
/ X xl . X 1 X _1 .
e'cosaxdx =e'—sinax —e' | ——cosax | +¢e' | —sinax ) +---
a a? a3

ey 1 L.
=e —sinax + — cosax — — sinax + - - -
a a? 3

PE
. 11 . 11
=esmax|—-———+---)+ecosax|———+ -

a al a? a*
rl 1 . + X
=¢'————sinax + ¢' — ——— cosax
al+1/a? a’l+1/a?

X

e
= ﬁ(a sinax + cosax)
a

Problems [ [ [

Find a general formula for each integral as a function of the 5. [ x"coshbx dx
positive integer n. 6. [x"(ax +b)*dx
1. [x"cosaxdx

Find each integral using as a model the work in Example
7.3.3.

7. [ €% cosaxdx

8. [eP*sinaxdx

2. [x"sinaxdx
3. [x"eb*dx
4. [ x"sinhbxdx

7.3.2 Some Expansions

In this section we will find some Fourier series expansions of several of the more common func-
tions, applying the theory of the previous sections.

EXAMPLE 7.3.4

Write the Fourier series representation of the periodic function f(¢) if in one period
o

fty=t, —mw<t<m
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EXAMPLE 7.3.4 (Continued) \ | | |

» Solution

For this example, T = 7. For a,, we have

T

1 [~ 1 [~ 12
ag = — f(t)dt:—/ tdt = — =0
) . T J_ . 2 |_,
1 b1
a, = — f(t)cosntdt, n=1,2,3,...
T J-n
1 (7 17¢ . 1 T
= — tcosntdt = — —sinnt + — cosnt =0
T J . T |n n _n
recognizing that cos nw = cos(—nm) and sin nw = — sin(—nw) = 0. For b, we have

s

1
b, = — f@)sinntdt, n=1,2,3,...
T Jx

| O 1 t I . i 2
=— tsinntdt = — | ——cosnt + — sinnt = ——cosnm
T J Tl n n _ﬂ n

The Fourier series representation has only sine terms. It is given by

fo=-2%" D Ginne
n=1

n

where we have used cos nw = (—1)". Writing out several terms, we have

f(t)=—=2[—sint + Jsin2t — Lsin3r + -]

=25int—sin21+%sin3t—~~

Note the following sketches, showing the increasing accuracy with which the terms approximate the f ().
Notice also the close approximation using three terms. Obviously, using a computer and keeping, say 50
terms, a remarkably good approximation can result using Fourier series.

FOX) FOX J®

[\ /7 | t
L |

\

\

2sint 2sint — sin 2 25sin7 — sin 2 + 2 sin 3
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EXAMPLE 7.3.5 \ | | |

Find the Fourier series expansion for the periodic function f(¢) if in one period

J®

0, —m<t<0 i ///} /I
f(t)_{t, O<t<m | ’ lL 1

|
3
:‘ —

» Solution

The period is again 2 ; thus, 7 = 7. The Fourier coefficients are given by

1 [7 1 [7
ay = — f(t)dt:—/ tdt = —
— T J_o

1 (7 10
a, = — f(t)cosntdt = —f Ocosnt dt
T T J_

-7 T

1 T
—|——/ tcosntdt
T Jo

| 1 4 1
= — | —sinnt + — cosnt :—(cosnn—l), n=1,2,3,...
n n? n?

T

1 1 1 [~
b, = — f(@®)sinntdt = —/ Osinntdt + — / t sinnt dt
- T 0

S|

1 t
=—|:——cosnt+—smnt ——cosnn n=1,2,3,...
n

The Fourier series representation is, then, using cos nm = (—1)",

T e~ [(=D" =1 =" .
f(t)=_ ;[TCOSVH— " SlIlI/ltj|

4
b4 2 2 .
= — — —cost — —cos3t+---+sint
4 7w U4

1 1
—Esin2t+§sin3t—|—~~
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EXAMPLE 7.3.5 (Continued) \ | | |

In the following graph, partial fourier series with n equal to 5, 10, and 20, respectively, have been plotted.

£ " 1:0 20\
" N

T

3.00

—1.00 1.00 2.00 3.00

EXAMPLE 7.3.6 \ | | |

Find the Fourier series for the periodic extension of

1

sin ¢, 0<t<m
f(t)_{ 0, m<t<2nm 4/\ /

|
—21r -

3
)
3

» Solution

The period is 27 and the Fourier coefficients are computed as usual except for the fact that a; and b; must be
computed separately—as we shall see. We have

1 [ . 1 T2
ag = — sintdt = —(—cost)| = —
T Jo T 0o T
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EXAMPLE 7.3.6 (Continued) \ | | |

Forn # 1:

1 b
a, = —f sinz cos nt dt
T Jo

1 L
= — / [sin(t + nt) + sin(t — nt)] dt
27 0

1 [cos(n + Dt cos(n — l)t]”

o n+1 n—1 0

_ 1 [(=Drt (=)t n 1 1 1
T 27| on+1 n—1 2 | n+1 n—1

_ 1 _ 1\l
= xmE—0) 1)[( D 1]

1 s
b, = f/ sint sinnt dt
T Jo

= i /ﬂ [—cos(n + 1)t + cos(n — 1)t]dt
0

=0

2w

1 [—sin(n + Dt sin(n — 1)ti|”
= — +

2w

- n+1 n—1 0

For n =1 the expressions above are not defined; hence, the integration is performed specifically for n = 1:

1 T
a1=—/ sinz cost dt
T Jo
1 sin’¢|”
= — =O
T 2 |

| . 1 /1 1
by = — sintsintdt = — — — —cos2t | dt
T Jo T Jo 2 2

1 /1 I S |
=—|zt— —sin2t =
T \2 4

Therefore, when all this information is incorporated in the Fourier series, we obtain the expansion

0

f@® ! +1 int -+ : i(_l)nﬂ t
= — 4 —sin — cosn
T 2 i n?—1
| 2 & cos2nt
= — — r— — _
ﬂ—l—zsm 71”2:1:4n2—1
The two series representations for f(t) are equal because (=D — 1 = —2 and (=1)* — 1 = 0. This se-
ries converges everywhere to the periodic function sketched in the example. For t = /2, we have
L1 2 (=)
Sin — = — + —sin— — —
2 w2 2 miAnr -1
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EXAMPLE 7.3.6 (Continued)

which leads to

1 (-1 1+1 UL
— 4n? — | 371535 63

The function f () of this example is useful in the theory of diodes.

7.3.3 Maple Applications

Clearly the key step in determining Fourier series representation is successful integration to
compute the Fourier coefficients. For integrals with closed-form solutions, Maple can do these
calculations, without n specified, although it helps to specify that n is an integer. For instance,
computing the integrals from Example 7.3.6, n # 1, can be done as follows:

>assume (n, integer) ;
>a_n:=(1/Pi)*(int (sin(t) *cos (n*t), t=0..P1));

_ =1 +1
Tl+n~)=1+n~)

>b n:=(1/Pi)*(int (sin(t) *sin(n*t), t=0..P1));
b.n:=0

Some integrals cannot be computed exactly, and need to be approximated numerically. An ex-
ample would be to find the Fourier series of the periodic extension of f(t) = 4/t + 5 defined on
—m <t < m. Atypical Fourier coefficient would be

1 T
CI%:*/ At +5cos3tdt
T Jn

In response to a command to evaluate this integral, Maple returns complicated output that in-
volves special functions. In this case, a numerical result is preferred, and can be found via this
command:

>evalf ((1/P1i)* (int (sgrt (t+5) *cos(3*t), t=-Pi..Pi)));

0.006524598965

Problems [ 1 [1 [

Write the Fourier series representation for each periodic func-
tion. One period is defined for each. Express the answer as a 1. f@) = {
series using the summation symbol.

—t, —mw<t<O0
t, O<t<m

2. f(=t>, —-m<t<m
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3. f(t) =cos % —T<t<Tm 9. Problem 7 of Section 7.2
4. f@)=t+2m, 2w <t<2m 10. Problem 8 of Section 7.2
fOA 11. Problem 9 of Section 7.2
2 12. Problem 11 of Section 7.2
13. Problem 14 of Section 7.2
7}1 1 t Use Maple to compute the Fourier coefficients. In addition,
create a graph of the function with a partial Fourier series for
f@A large N.
N 14. Problem I
\ 15. Problem 2
_}1 ‘1 t 16. Problem 3
17. Problem 4
f@ 18. Problem 5
! Parabola 19. Problem 6
20. Problem 7
,‘1 ‘ ‘1 t 21. Problem 8

22. Problem 9
23. Problem 10
I 24. Problem 11

SN
Straight line 25. Problem 12

|
|
é . 26. Problem 13

7.3.4 Even and Odd Functions

The Fourier series expansions of even and odd functions can be accomplished with significantly
less effort than needed for functions without either of these symmetries. Recall that an even
function is one that satisfies the condition

f=)=f@) (7.3.7)

and hence exhibits a graph symmetric with respect to the vertical axis. An odd function satisfies
f(=1)=—f) (73.8)

The functions cos 7, t2 — 1, tan?z, k, |t| are even; the functions sin ¢, tan ¢, ¢, ¢|t| are odd.
Some even and odd functions are displayed in Fig. 7.2. It should be obvious from the definitions
that sums of even (odd) functions are even (odd). The product of two even or two odd functions

is even. However, the product of an even and an odd function is odd; for suppose that f(t) is
even and g(¢) is odd and h = fg. Then

h(=1) = g(=0) f(=1) = —g() f(1) = —h () (71.3.9)
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f@ 4 f0

2 N NG B

(a) Even (b) Odd
Figure 7.2 Some even and odd functions.

The relationship of Egs. 7.3.7 and 7.3.8 to the computations of the Fourier coefficients arises
from the next formulas. Again, f(¢) is even and g(¢) is odd. Then

T T
/ fdt = 2/ f@)dt (7.3.10)
-T 0

and
T
/ gt)dt =0 (7.3.11)
-T

To prove Eq. 7.3.10, we have

T 0 T
/ f(t)dt:/ f(t)dz+/ f@)dt
-T -T 0

0 T
= —/ f(—s)ds+/ f@t)dt (7.3.12)
T 0

by the change of variables —s = ¢, —ds = dt. Hence,

T T T
/ f(@)dt =/ f(—s)ds—l—/ f@dt
T 0 0

T T
=/ f(s)ds—l—/ f@)dt (7.3.13)
0 0

since f(t) is even. These last two integrals are the same because s and ¢ are dummy variables.
Similarly, we prove Eq. 7.3.11 by

T T T
/ g(t) dt = / g(—s)ds —l—/ g(®)dt
-7 0 0

T T
= —/ g(s)ds +/ g)dt =0 (7.3.14)
0 0

because g(—s) = —g(s).
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We leave it to the reader to verify:

1. An even function is continuous at ¢ = 0, redefining f(0) by Eq. 7.2.1, if necessary.
2. The value (average value, if necessary) at the origin of an odd function is zero.
3. The derivative of an even (odd) function is odd (even).

In view of the above, particularly Eqs. 7.3.10 and 7.3.11, it can be seen that if f(¢) is an even
function, the Fourier cosine series results:

a o nit
foy =3+ ;an cos (7.3.15)
where
2 /T F(0)di 2 /T £y cos "L ar (73.16)
ay = — . = cos —— 3.
0 T 0 8 T 0 T

If f(¢) is an odd function, we have the Fourier sine series,

o0
t
F@O = bysin "t (7.3.17)
n=1
where
2 (7 t
b, = 7/0 £ sin%dz (7.3.18)

From the point of view of a physical system, the periodic input function sketched in Fig. 7.3
is neither even or odd. A function may be even or odd depending on where the vertical axis,
t = 0, is drawn. In Fig. 7.4 we can clearly see the impact of the placement of ¢ = 0; it generates
an even function f(¢) in (a), an odd function f>(¢) in (b), and f3(¢) in (c) which is neither even
nor odd. The next example illustrates how this observation may be exploited.

Figure 7.3 A periodic input.
\V \V t

£ () 130
() (b) (©

Figure 7.4 An input expressed as various functions.
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EXAMPLE 7.3.7

A periodic forcing function acts on a spring—mass system as shown. Find a sine-series representation by con-
sidering the function to be odd, and a cosine-series representation by considering the function to be even.

I

2

2 2

e

» Solution

If the t+ = 0 location is selected as shown, the resulting odd function can be written, for one period, as

f1®

-2 —2<1<0 2 B
fl(’)_{ 2, 0<t<2
-2 2 t
- -2
For an odd function we know that
a, =0

Hence, we are left with the task of finding b,,. We have, using T = 2,

2 (T niwt

b, = —/ fi(t)sin——dt, n=1,2,3, ...
T Jo T
2 (2 . nmt 4 nrt |* 4
= - 2sin—dt = ——cos—| = ——(cos nwt — 1)
2 Jo 2 nmw 2 nmw

The Fourier sine series is, then, again substituting cos nm = (—1)",

411 — (—1)"
fl(r>=2%sin"7’”

n=l1

If we select the = 0 location as displayed, an even function results. Over one period it is

L®OA

-2, 2<t<-1

f@) = 2, —1<tr<l1
-2, l<t<?2 =31 -1 1 30t
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EXAMPLE 7.3.7 (Continued) \ | | |

For an even function we know that

b, =0
The coefficients a,, are found from
2 T
a, = — fz(t)COS—dt n=1273,...
T Jo
2 /2 ’””dt+/( 2)cos "2 g
= - cos — —2)cos —
2 1Jo 2 1 2
4 . antl| 4 . amt)? 8 . nm
= —sin—| — — —| = —sin—
ni 2 |, nm 2 |, nm 2
The result for n = 0 is found from
2 T
== t)dt
ap T/o f2()
2
5 /Zdt—i-/ (=2)dt —2=0

Finally, the Fourier cosine series is
o0
8 . nm nwt
t) = — sin — cos ——
f(®) ;mr 5 008 —
8 mwt 8 3mt 8 Smt

:—COST—ECOST—FgCOST_i_...

We can take a somewhat different view of the problem in the preceding example. The rela-
tionship between f1(¢) and f>(¢) is

[+ 1) = fo0) (7.3.19)
Hence, the odd expansion in Example 7.3.7 is just a “shifted” version of the even expansion.
Indeed,
21— ( D'l . nw@+1)
mwm—ﬁm=;4 sin ——
X[ —=(=D"1/ . nm nwt nmw . nmt
2247 sin — cos —— + cos —— sin ——
~ nw 2 2 2 2
8 K (—1)! 2n —1
==y DT 2=y (7.3.20)
2n —1 2

1

n

which is an even expansion, equivalent to the earlier one.
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1. In Problems 1 to 8 of Section 7.3.2, (a) which of the
functions are even, (b) which of the functions are odd,
(c) which of the functions could be made even by shifting
the vertical axis, and (d) which of the functions could be
made odd by shifting the vertical axis?
Expand each periodic function in a Fourier sine series
and a Fourier cosine series.
2. f(t) =4t O<t<m
10, O<t<m
3. t) =
f@ { 0, w<t<2m
4. f(t) =sint, O<t<m
5. fA
v H\
!
D t
6. SO
24-————mm - :
|
Parabola }
%
4 t

7.3.5 Half-Range Expansions

1 1 [

7. f@O

100
| 1 2 g

8. Show that the periodic extension of an even function
must be continuous at ¢ = 0.

9. Show that the period extension of an odd function is zero
att =0.

10. Use the definition of derivative to explain why the deriv-

ative of an odd (even) function is even (odd).

Use Maple to compute the Fourier coefficients. In addition,
create a graph of the function with a partial Fourier series for

large N.

11. Problem 2
12. Problem 3
13. Problem 4
14. Problem 5
15. Problem 6
16. Problem 7

In modeling some physical phenomena it is necessary that we consider the values of a function
only in the interval O to 7. This is especially true when considering partial differential equations,
as we shall do in Chapter 8. There is no condition of periodicity on the function, since there is no
interest in the function outside the interval O to 7. Consequently, we can extend the function ar-
bitrarily to include the interval —T to 0. Consider the function f(¢) shown in Fig. 7.5. If we ex-
tend it as in part (b), an even function results; an extension as in part (c) results in an odd func-
tion. Since these functions are defined differently in (—7', 0) we denote them with different
subscripts: f, for an even extension, f, for an odd extension. Note that the Fourier series for
fe(t) contains only cosine terms and contains only sine terms for f,(¢). Both series converge to
f(@) in 0 <t < T. Such series expansions are known as half-range expansions. An example

will illustrate such expansions.
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1 T T | T >
‘ T ' T ‘ r ' - M T !

(a) f( (b) Even function (¢) Odd function
Figure 7.5 Extension of a function.

EXAMPLE 7.3.8 [ | | |

A function f(¢) is defined only over the range 0 < t < 4 as

f(I)AV\‘
t, O0<t<2
f(t)_{4—t, 2<1<4 1

R

Find the half-range cosine and sine expansions of f(z).

» Solution

A half-range cosine expansion is found by forming a symmetric extension f(f). The b, of the Fourier series is
zero. The coefficients a,, are

2 /Tf(t) N 1,2.3
a, = — COS — y n=1,2,5,---
T T

2 [? t 2 [t t
:7/0 tcos%dr—}-zfz (4—t)cos%dt

4
1T 4 T 16 nﬂt2+1 16 . nnt]?*
= | —sin— + —— cos — — | — sin —
2 | nm 4 2n? 4 |, 2|nm 4 |,
1] 4r . n7n+ 16 nmt]?
— —| —sin — + —— cos —
2 4 n2m? 4 1,

8 ) nmw
= —m [1 + cos nt — 2 cos 7]

For n = 0 the coefficient ay is

2 4
a():%/tdt+%/(4—t)dt:2
0 2
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EXAMPLE 7.3.8 (Continued) \ | | |

The half-range cosine expansion is then

> 8 nmw nmt
f(t):1+Zlm<2COST_Cosnn_l>COST

| 8 m+1 371t+ 0<t<d
=1——|cos—+—-cos— +---|, <t<
72 2 9 2

It is an even periodic extension that graphs as follows:

/\/%/\

T T T T
-2 —4 | 4 8 d

Note that the Fourier series converges for all #, but not to f(¢) outside of 0 < # < 4 since f(¢) is not defined
there. The convergence is to the periodic extension of the even extension of f(¢), namely, f.(t).
For the half-range sine expansion of f(¢), all a, are zero. The coefficients b, are

2 (7 t
bﬂ=—/ FOsinZdr, n=1,2,3,...
T J T

2 (2 amt 2 (4 . nmt 8 . nm
= - tsin— dt + — (4 —1t)sin—dt = —— sin —
4 J, 4 4/, 4 n2m? 2

The half-range sine expansion is then

. 8 . nm . nmt
f(t)=;msm7$1n7
8 [ . mt 1,37rt+1 . Smt 0<i<4
= —|SiIn— — —SIn —— —sm-——---1, <r<
) 4 94 Tty

This odd periodic extension appears as follows:

N f;(mV\ .

Here also we denote the periodic, odd extension of f(¢) by ﬁ, (t). The sine series converges to f(,(t) every-
where and to f(¢) in 0 < ¢t < 4. Both series would provide us with good approximations to f(¢) in the inter-
val 0 < ¢ < 4 if a sufficient number of terms are retained in each series. One would expect the accuracy of the
sine series to be better than that of the cosine series for a given number of terms, since fewer discontinuities
of the derivative exist in the odd extension. This is generally the case; if we make the extension smooth,
greater accuracy results for a particular number of terms.
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1 1 [

1. Rework Example

the two zero points of f () beatt = 0ands = T. Let the

maximum of f(¢)

2. Find a half-range cosine expansion and a half-range sine

expansion for the

Which expansion would be the more accurate for an

7.3.8 for a more general function. Let 3. Find half-range sine expansion of

t, 0<t<?2
2, 2<t<4

Make a sketch of the first three terms in the series.

att =T/2 be K. f(t):{

unction f (1) orb<ri=< Use Maple to solve

equal number of terms? Write the first three terms in each ~ 4. Problem 2

series.

5. Problem 3

7.3.6 Sums and Scale Changes

Let us assume that f(¢) and g(¢) are periodic functions with period 27 and that both functions
are suitably? defined at points of discontinuity. Suppose that they are sectionally continuous in
—T <t < T.Itcan be verified that

f@ @0 + i a, cos i + b, sin i (7.3.21)
2 n=1 ! T ! T o
and
o) = nwt nmt
g(r) ~ 7( + ; (an cos —— + B sin T) (7.3.22)
imply
ap x & nmt nmt
FO £~ ==+ ; [(an £ 0,) 08—~ + (by £ ) sin T] (73.23)
and

Fy ~ e 43 (caycos "™ b, sin ™! (7.3.24)
C ~ C— cay — cby, e ..
: 2 T L T T

These results can often be combined by shifting the vertical axis—as illustrated in
Example 7.3.7—to effect an easier expansion.

3As before, the value of f(¢) at a point of discontinuity is the average of the limits from the left and the right.
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EXAMPLE 7.3.9 [ | | |

Find the Fourier expansion of the even periodic extension of f(¢#) = sin t, 0 <t < 7, as sketched, using the
results of Example 7.3.6.

» Solution

Clearly, fi(t) + fo(¢) = fe(t) as displayed below, where, as usual, fe(t) represents the even extension of
f(@)=sint, 0 <t <m.But

fi@+m) = fo(t)

1
h :
/\ / \ /\
1 | | | | | | 7,
=2 —r ‘ T 2 ! =2 - ‘ T 2w !
and, from Example 7.3.6,
1 1. 2 X cos 2nt
HH=—+=-sint—=—% ——
ho n+2sm n;4n2—1
Therefore,
1 1. 2 X cos 2n(t + )
fO = filt+m) = —+ Ssint +7) = ;;ﬁ
Since sin(t 4+ ) = — sin ¢ and cos [2n(t + )] = cos 2nt, we have
1 1 2 X, cos 2nt
H=———sint—— Y% ———
£ T 25m nn2=;4n2—1

Finally, without a single integration, there results
fe) = fi®) + 0

2 4§:c052nt
R 4n? — 1

n=1
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It is also useful to derive the effects of a change of scale in ¢. For instance, if

> t t
f@) ~ % + HZ:; (an cos % + b, sin %) (7.3.25)

then the period of the series is 27 . Let

>

(7.3.26)

QN

Then
. T\ a & nrt . nnt
fO=f—-1t)~=+ Z a, cos — + by, sin — (7.3.27)
T 2 T T

is the series representing f (f) with period 27. The changes T = 1 and T = 7 are most common
and lead to expansions with period 2 and 2, respectively.

EXAMPLE 7.3.10 \ | | |

Find the Fourier series expansion of the even periodic extension of

t, 0<t<l1

g(t):{Z—t, l<t<2

» Solution

This periodic input resembles the input in Example 7.3.8. Here the period is 4; in Example 7.3.8 it is 8. This
suggests the scale change 27 = ¢. So if

t, 0<t<?2
—t, 2<t<4

o=,

. R 21, 0<2t<2?2
f(t)=f(2f)={4_2f, 2<2f <4

Note that g(7) = f(f)/2. So

~

t, 0<f<l1
g(ﬂ_{z—f, l<i<2

IAIA
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EXAMPLE 7.3.10 (Continued)

But from g(f) = .]‘A‘(IA)/Z we have (see Example 7.3.8)

N 1 8 ~ 1 N
gt) = 3 [1 - (cosnt+§cos3nt+-~->:|

Replacing 7 by  yields

1 4 1
gt)==-——\cosmt+ —cos 3wt +---|, 0<tr<?
2 n? 9

Problems 1 [ [

1. Let

- <t<0

0,
f(l):{fl(t), Vi<

have the expansion 1 ‘ T
w

o0
f@) = % + Zan cosnt + b, sinnt

which is
n=1

(a) Prove that

o0 n n
z—i—z%cosm— ) sin nt
Fl=t) = { fi(=t), —m<t<0 4 &  7mn n
0, O<t<m
to obtain the expansion of
and, by use of formulas for the Fourier coefficients, that

1) = |t, — t
- fo=1, —w<i<m
f(—t):?-i-Zan cos nt — b, sin nt, T<t<Tm
n=1
w
(b) Verify that
= | —
fe(2) =610+2261n cos nt, —T<t<Tm - ‘ ™

n=1

3. Use the result in Problems 1 and 2 and the methods of

where f,(7) is the even extension of fi(¢), 0 <t < 7. > ; . .
this section to find the Fourier expansion of

2. Use the results of Problem 1 and the expansion of

t+1, —1<t<0
—t+1, 0<t<l1

f(z>={°’ m=t<0 f(t)={

t, O<t<m
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4. The Fourier expansion of 5. Use the information given in Problem 4 and find the
n 1, —m<t<0 expansion of
f=
1, O<t<m -1, —m7<t<0
1) = ’
is fo { 0, O<t<m
o0
i Z sin(zn — Dt 6. If f() is constructed as in Problem 1, describe the func-
T 2n—1 tion f(t) — f(~1).
Use this result to obtain the following expansion: 7. Use Problems 2 and 6 to derive
0, —w<t<0
f(t)_{l, O<t<m > (=t
. z:ZZ sin nt, —T<t<m
by observing that f(¢) = [1 4+ f(¢)]/2. n=1

7.4 FORCED OSCILLATIONS

We shall now consider an important application involving an external force acting on a spring-
mass system. The differential equation describing this motion is

MEY ek F() 74.1)
ez " TR T -

If the input function F'(¢) is a sine or cosine function, the steady-state solution is a harmonic mo-
tion having the frequency of the input function. We will now see that if F (¢) is periodic with fre-
quency w but is not a sine or cosine function, then the steady-state solution to Eq. 7.4.1 will con-
tain the input frequency w and multiples of this frequency contained in the terms of a Fourier
series expansion of F(¢). If one of these higher frequencies is close to the natural frequency of
an underdamped system, then the particular term containing that frequency may play the domi-
nant role in the system response. This is somewhat surprising, since the input frequency may be
considerably lower than the natural frequency of the system; yet that input could lead to serious
problems if it is not purely sinusoidal. This will be illustrated with an example.

EXAMPLE 7 .4.1 \ | | |

Consider the force F(¢) acting on the spring—mass system shown. Determine the steady-state response to this
forcing function.

» Solution
The coefficients in the Fourier series expansion of an odd forcing function F(¢) are (see Example 7.3.7)
a, =0
2 (! t 200 : 200
b, = —/ 100 sinﬂdt=——cosnn't =——(cosnr—1), n=1,2,...
1 Jo 1 nmw 0 nmw
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EXAMPLE 7.4.1 (Continued) \ | | |

7

K = 1000 N/m F(
--- 100 —
1 .
10kg TF(r) —11 TP
!
|
—100
C = 0.5kg/s
Z

The Fourier series representation of F(¢) is then
>, 200 . 400 . 400 . 80 .
F@) = Z — (1 —cosnm)sinnwt = — sinwt — — sin3xwt + — sinSwt — - - -
~ nw b4 3 b4

The differential equation can then be written
> d 400 400 80
10 — 4+ 0.5 td + 1000y = — sinwt — — sin3nt + — sinSmnt — - - -
dr? dt 7 37 7

Because the differential equation is linear, we can first find the particular solution (y, ) corresponding to the first
term on the right, then (y,)> corresponding to the second term, and so on. Finally, the steady-state solution is

yo(0) = ph + pa+ -+
Doing this for the three terms shown, using the methods developed earlier, we have
(yp)1 = 0.141 sin ¢t — 2.5 x 107* cos 7t
(¥p)2 = —0.376 sin 3t + 1.56 x 1073 cos 37t
(¥p)3 = —0.0174 sin 5wt —9.35 x 107> cos 57t

Actually, rather than solving the problem each time for each term, we could have found a (y,), corresponding
to the term [—(200/nm)(cos nwr — 1) sin nrt] as a general function of n. Note the amplitude of the sine term
in (yp)2. It obviously dominates the solution, as displayed in a sketch of y, (¢):

V(D

Output y(t)

\#/ Input F(r)
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EXAMPLE 7.4.1 (Continued) \ | | |

Yet (y,)> has an annular frequency of 37 rad/s, whereas the frequency of the input function was 7 rad/s. This
happened because the natural frequency of the undamped system was 10 rad/s, very close to the frequency of
the second sine term in the Fourier series expansion. Hence, it is this overtone that resonates with the system,
and not the fundamental. Overtones may dominate the steady-state response for any underdamped system that
is forced with a periodic function having a frequency smaller than the natural frequency of the system.

7.4.1 Maple Applications

There are parts of Example 7.4.1 that can be solved using Maple, while other steps are better
done in one’s head. For instance, by observing that F(¢) is odd, we immediately conclude that
a, = 0. To compute the other coefficients:

>b[n]:=2*int (100*sin(n*Pi*t), t=0. .1);

_ZOO(cos(nn)— 1)
nmw

b, 1=

This leads to the differential equation where the forcing term is an infinite sum of sines. We can
now use Maple to find a solution for any n. Using dsolve will lead to the general solution:
>deq:=10*diff (y(t), t$2)+0.5*diff(y(t),

t)+1000*y (t)=b[n]*sin(n*Pi*t) ;

2 200 (cos (nw)—1)sin(nwt)

d
deq::lo( (t))+o.5<gty<t)>+1000y(t)=

ae” n

>dsolve (deq, y(t));

<. («/159999 t)
Ssin T

v =el3 C2+e(ﬁ>cos(

/159999 t c1
40 -

+ (400000 + 4000n°7?) sin (nwt— nm)+ 200n7 cos (nwt + nw)

— 400000 sin(nwt +nmw)+4000n’x? sin(nwt + nw)

4+ 800000 sin(nmwt)— 400 cos (nmwnw + 200nmw cos (nwt— nm)

— 8000’72 sin(nmwt)/ 4000000nw — 79999r°n> +400°w°)
The first two terms of this solution are the solution to the homogeneous equation, and this part
will decay quickly as ¢ grows. So, as ¢ increases, any solution is dominated by the particular so-

Iution. To get the particular solution, set both constants equal to zero, which can be done with
this command:

>ypn:= op(3, op(2, %));
ypn 1= ((—400000 + 4000°7?) sin (nwt— nmw )+ 200n7 cos (nwt 4+ nmw)
— 400000 sin(nwt+ nmw)+ 4000°7? sin(nnt + nw)
+ 800000 sin(nwt)— 400 cos (nw t)nw 4+ 200nmw cos (nmt— nmw)
—8000n°m? sinmmt)/ 4000000nw — 79999’ n> +400n°7>)
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This solution is a combination of sines and cosines, with the denominator being the constant:
4000000nw —79999n’w> + 400n°w>

The following pair of commands can be used to examine the particular solution for fixed values
of n. The simplify command with the t rig option combines the sines and cosines. When
n =1, we get

>subs (n=1, ypn):
>simplify (%, trig);

800(—2000 sin(@t) +20m? sin @t + cos ()
T (4000000 — 7999972 4+ 400m?)

Finally,

>evalf (%) ;

0.1412659590 sin(3.141592654 1) — 0.0002461989079 cos(3.141592654 t)

which reveals (y,); using floating-point arithmetic. Similar calculations can be done for other
values of n.

Problems 1 [ [

Find the steady-state solution to Eq. 7.4.1 for each of the 11. What is the steady-state response of the mass to the
following. forcing function shown?

1. M=2, C=0, K=8, F(t)=sindt
2 M=2, C=0, K=2, F(t)=cos2t
3. M=1, C=0, K=16, F(t)=sint+ cos2t
4. M=1, C=0, K =25 F(t)=cos2t+ sindt F()
. SON
5. M=4, C=0, K=36, F(t)=) a,cosnt = i_
n=1 _3E m—y 1 3 F(t)IM=2kg
M=4, C=4, K =36, F(t)=sin2t P |
M=1, C=2, K=4, F(t)=cost J
N C = 0.4 kgls
8 M=1, C=12, K=16, F() =) b,sinnt
n=1
9. M=2 (C=2, K-=28, Et):sint—i—l'—ocosZt 7
10. M=2, C=16, K =32,
t —m/2<t<m/2
F(t) =
@ {n—z w/2 <t <3m/2

and F(t+2m) = F(t)
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12. Determine the steady-state current in the circuit shown.

v(t) A

120

20 ohms
ANV

v(t) 10-5 farad

0.001 0.002 0.003s d 10-3 henry

13. Prove that (y,), from Example 7.4.1 approaches 0 as  22. Problem 9

Use Maple to solve

n — o0.

23. Problem 10
24. Problem 11

14.
15.
16.
17.
18.
19.
20.
21.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8

25. Problem 12

26. Solve the differential equation in Example 3.8.4 using
the method described in this section. Use Maple to sketch
your solution, and compare your result to the solution
given in Example 3.8.4.

27. Solve Problem 12 with Laplace transforms. Use Maple to
sketch your solution, and compare your result to the
solution found in Problem 12.

7.5 MISCELLANEOUS EXPANSION TECHNIQUES

7.5.1 Integration

Term-by-term integration of a Fourier series is a valuable method for generating new expan-
sions. This technique is valid under surprisingly weak conditions, due in part to the “smoothing”
effect of integration.

Theorem 7.2: Suppose that f(t) is sectionally continuous in —mw < t < m and is periodic with
period 21 . Let f(t) have the expansion

[o¢]
f(@) ~ (aycosnt + b, sinnt) (7.5.1)
n=l1
Then
! X b & b a
/(.) f(s)ds = ; ;"4— ; <—7" cosnt + ;" sin nt) (7.5.2)
Proof: Set

F(t) = / f(s)ds (7.5.3)
0
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and verify F (¢t + 2m) = F(¢) as follows:
2
F(t+271):/ f(s)ds
0

t t+2m
:/ f(s)ds+/ f(s)ds (7.5.4)
0 t

But f(¢) is periodic with period 2, so that

t+2m b4

/ f(s)ds = f(s)ds =0 (7.5.5)
t -

since 1/m ffﬂ f(s)ds = ap, which is zero from Eq. 7.5.1. Therefore, Eq. 7.5.4 becomes

F(t 4+2m) = F(t). The integral of a sectionally continuous function is continuous from

Eq.7.5.3 and F'(¢t) = f(¢) from this same equation. Hence, F’(¢) is sectionally continuous. By

the Fourier theorem (Theorem 7.1) we have

F(1) A°+i(A t + B, sinnt) (7.5.6)
= — cosn sinn .
2 — n n
valid for all 7. Here
1 [7 1 [7
A, = —f F(t)cosnt dt, B, = —/ F(t)sinnt dt (7.5.7)
T J s T J .

The formulas 7.5.7 are amenable to an integration by parts. There results

1 b
A, —/ F(t)cosnt dt
T J-xn

1 sinnt |* 1 (" sin nt
- “F@) | o4
T w T ) n
b,
— " a=1,2, ... (1.5.8)
n
Similarly,
1 T
B, = —/ F(t)sinnt dt
T Jx
1 cosnt\ |* 1 [~ cos nt
— “F@) (— ) +— [ fo dt
T n . T n
ay
=—, n=1,2, ... (7.5.9)
n

because F () = F(—n + 27) = F(—m) and cos ns = cos(—ns) so that the integrated term is
zero. When these values are substituted in Eq. 7.5.6, we obtain

o0

A b
F(t) = 70 +> (—7” cosnt + % sinnt) (7.5.10)

n=1
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Now set # = 0 to obtain an expression for Ay:

0 Ao by
FO=|[ fOdt=0=—1—-)> — (7.5.11)
0 2 n

n=1

so that

S
B}

Ay &
- = Z — (7.5.12)

n=1

Hence, Eq. 7.5.2 is established.
It is very important to note that Eq. 7.5.2 is just the term-by-term integration of relation 7.5.1;

one need not memorize Fourier coefficient formulas in Eq. 7.5.2.

EXAMPLE 7.5.1

Find the Fourier series expansion of the even periodic extension of f(¢) = 1>, —m <t < 7. Assume the ex-

pansion

o0 1 n—1
t = 22 ) sinnt
n
n=1

» Solution

We obtain the result by integration:

t 0 (_l)n—l t
sds =2 / sinns ds
/0 Z n 0
_22
(- 1 —1)n-!
= 22 ) Z ( n)2 cosnt

n=1

_])n 1 t
(— cosns)

Of course, [ s ds = t2/2, so that
0 n—1 o n—1
(=D (=D
=2 r?:l P 2 ,;=1 2 cos nt

The sum 2222 [(— 1)"~!/n?*] may be evaluated by recalling that it is ao/2 for the Fourier expansion of 2/2

That is,
2
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EXAMPLE 7.5.1 (Continued) \ | | |

Hence,
__22( 1! nz
SO
F = %2 — 4§ (_’11);71 cosnt

EXAMPLE 7.5.2 [ | | |

Find the Fourier expansion of the odd periodic extension of 13, —7 < t < 7.
» Solution
From the result of Example 7.5.1 we have

t2

& 2( 1)"1
—_ = — Z cosnt

This is in the form for which Theorem 7.2 is applicable, so

trs? g2 B 7
/ SN DA A
o \ 2 6 6 6
e _ln—l
=—22%Sinnt

Therefore,

00 (_ n—1

3 2 ) .
r’=nt—12 sin nt
Z n3

n=1

which is not yet a pure Fourier series because of the 72¢ term. We remedy this defect by using the Fourier ex-
pansion of ¢ given in Example 7.5.1. We have

222

> /2 12
<i — —) (=1)""'sinnt

_]nl

. s
sinnt — 12 >— sinnt
n
n=1

n=1
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In summary, note these facts:
1. £22,b,/n converges and is the value Ag/2; that is,
1 4 > b,
=8 F(s)ds=)_ — (7.5.13)

n=1

2. The Fourier series representing f (t) need not converge to f(¢), yet the Fourier series
representing F'(¢) converges to F'(¢) for all «.
3. If

o0
F(6) ~ % + 3 (au cosnt + b, sinni) (1.5.14)

n=1

we apply the integration to the function f(#) — ap/2 because

o0
f(0) — “—20 ~ ; (@, cOs nt + b, sinnt) (1.5.15)

Problems [ 1 [1 [

Use the techniques of this section to obtain the Fourier expan- 9. Example 7.3.6
sions of the integrals of the following functions. 10. Section 7.3.2. Problem 4
1. Section 7.2, Problem 1 11. Section 7.3.2, Problem 7
2. Section 7.2, Problem 3 12. Show that we may derive
3. Section 7.2, Problem 5 . 2 o .
X — X sinnx
4. Section 7.2, Problem 6 ——— =) (=
ection roblem B Zl: -1 3
5. Section 7.2, Problem 9 . . "=
. by integration of
6. Section 7.2, Problem 13
7. Section 7.2, Problem 14 72 —3x% i P i
8. Example 7.3.5 12 n=1 n’

7.5.2 Differentiation

Term-by-term differentiation of a Fourier series does not lead to the Fourier series of the differ-
entiated function even when that derivative has a Fourier series unless suitable restrictive hy-
potheses are placed on the given function and its derivatives. This is in marked contrast to term-
by-term integration and is illustrated quite convincingly by Eqs. 7.1.4 and 7.1.5. The following
theorem incorporates sufficient conditions to permit term-by-term differentiation.
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Theorem 7.3: Suppose that in —t <t < 7, f(t) is continuous, f'(t) and f"(t) are
sectionally continuous, and f(—mn) = f(m). Then

o0
f@ = 61_20 + Zan cosnt + b, sinnt (7.5.16)

n=1

implies that
d > d
@ = 7 (%) + ; E(a" cosnt + b, sinnt)

o0
= Z nb, cosnt — na, sinnt (7.5.17)

n=1

Proof: We know that df/dt has a convergent Fourier series by Theorem 7.1, in which theorem
we use f’ for fand f” for f’. (This is the reason we require f” to be sectionally continuous.)
We express the Fourier coefficients of f'(¢) by &, and 8, so that

o0
() = % + oy cosnt + B, sinnt (7.5.18)
n=1

where, among other things,

1 T
oy = — f(s)ds
bid

-7

1
= ;[f(ﬂ) - f(=m)]=0 (7.5.19)

by hypothesis. By Theorem 7.2, we may integrate Eq. 7.5.18 term by term to obtain

/0 fl(s)ds = f(t) — f(0)

o0 o0
= E & + E —& cosnt + o sin nt (7.5.20)
n n n

n=1 n=1

But Eq. 7.5.16 is the Fourier expansion of f(¢) in —7 < t < m. Therefore, comparing the co-
efficients in Egs. 7.5.16 and 7.5.20, we find

an=—""0 by=—", a=12, .. (7.5.21)
n

‘We obtain the conclusion (Eq. 7.5.17) by substitution of the coefficient relations (Eq. 7.5.21) into
Eq. 7.5.18.




Problems

1.

EXAMPLE 7.5.3

Find the Fourier series of the periodic extension of
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g
) = 0, -7 <t<0 \
EW = cost, O0<t<m } ; % | .
-7 \j T 2 \j377 !
» Solution
The structure of g(¢) suggests examining the function
0, —m<t<0
f(t)_isinz, O<t<m

In Example 7.3.6 we have shown that

cos 2nt

f@ 1+1't 2i
= — 4 —sint — — _ =
b ) T 4n? — 1

n=1

Moreover, f () = f(—m) = 0 and f(¢) is continuous. Also, all the derivatives of f(¢) are sectionally con-

tinuous. Hence, we may apply Theorem 7.3 to obtain

- 1 4
g(t) = zcost + —
2 b4

i n sin2nt
= 4n? — 1

where g () is the periodic extension of g(¢). Note, incidentally, that

§0) = 5

g0 +g07) 1

2

and this is precisely the value of the Fourier series at = 0.

Let g(#) be the function defined in Example 7.5.3. Find
g’ (). To what extent does g’(7) resemble

O0<t<m
-7 <t<0

sint,

f(t)={ 0

Differentiate the Fourier series expansion for g(¢) and explain
why it does not resemble the Fourier series for — f (7).

2. Show thatin —7 <t <m, t #0,

1 1 [

d . . —T<t<0
—|sint| =

dt
Sketch d/dt|sint| and find its Fourier series. Is Theorem

7.3 applicable?

{ —cost,

cost, O<t<m

3. What hypotheses are sufficient to guarantee k-fold term-

by-term differentiation of

o0
f@) = % + Zan cosnt + b, sinnt

n=1



450

CHAPTER 7 / FOURIER SERIES

7.5.3 Fourier Series from Power Series?
Consider the function In(1 + z). We know that

2 2
n(l+z)=z2——+—=—--- (7.5.22)
2 3
is valid for all z, |z| < 1 except z = —1. On the unit circle |z] = 1 we may write z = ¢ and
hence,
In(1 + %) = ¢ — 3 + 1 — - .. (7.5.23)
except for z = —1, which corresponds to 6 = . Now
¢’ =cosf +isind (7.5.24)
so that ¢ = cosnf + i sinné and
l+e%=1+cosd +isind
0 0 0
=2(cos® = +isin=cos —
2 2 2
2 O tisin® O 262 cos 7.5.25
=2(cos= sin - ) cos = = cos — 5.
g TN )y T 2 (7:525)
Now
Inu =1In|u|+iargu (7.5.26)
so that
io 6 0
In(1 +¢'") =1In|2cos 3 —}—15 (7.5.27)

which follows by taking logarithms of Eq. 7.5.25. Thus, from Eqs. 7.5.23,7.5.24, and 7.5.27, we
have

In |2 o + ;9 0 ! 260 +
nf2cos=|+i= =cosf — = cos
2 2 2
1
+i <sin9 —3 sin26 + - - ) (7.5.28)
and therefore, changing 6 to ¢,
t 1 1
In 2cos§‘:cost—50052t+§cos3l+--~ (7.5.29)

“The material in this section requires some knowledge of the theory of the functions of a complex variable, a
topic we explore in Chapter 10.
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t . 1 . L.
7= sint 2 sin 2t + 3 sin3f + - - - (7.5.30)
Both expansions are convergent in —7 < t < 7 to their respective functions. In this interval
|2cost/2| =2cost/2 but In(2cost/2) is not sectionally continuous. Recall that our Fourier
theorem is a sufficient condition for convergence. Equation 7.5.29 shows that it is certainly not
a necessary one.

An interesting variation on Eq. 7.5.29 arises from the substitution t = x — 7. Then

ln(2 cos - ) = ln(2 sin %)
o _1 n—1
:Z( rz cosn(x — )
n=1
o -1 n—1 1"
=> DT ED osnx (75.31)
n
n=1
Therefore, replacing x with ¢,
t >\ 1
- ln(2 sin 5) =) ~cosnt (7.5.32)
n
n=1

which is valid® in 0 < ¢ < 2. Adding the functions and their representations in Eqs. 7.5.29 and
7.5.32 yields

t > 1
—Intan 5= 22 o cos(2n — 1)t (7.5.33)

n=1

Another example arises from consideration of

a 1

a—z 1—z/a
2

Z

=1+—+—2+~~
a a
cosf  cos20 . (sinf  sin20

=1+ + 7 Tt +— (7.5.34)

a a a
But
a a

a—e®  a—cosf —isinf
(a —cos@) +isind
a
(a — cos6)? + sin® 6
a —cosf +isinf

=-q— 7.5.
aaz—ZaCOSO—I—l (7.5.35)

Since — <t < 7 becomes —7 < x — 7w < 7, we have 0 < x < 27.



452 CHAPTER 7 / FOURIER SERIES

Separating real and imaginary parts and using Eq. 7.5.34 results in the two expansions

a —cost i . . (7.5.36)
a——————— =Y a " cosn 5.
a’?—2acost+1 4
asint e
_ = " sinnt 7.5.37
a2 —2acost + 1 Za mn ( )

n=1

The expansion are valid for all 7, assuming thata > 1.

Problems [ 1 [1 [

1. Explain why In|2 cos #/2| and In(tanf/2) in Equations 7.5.36 and 7.5.37 are valid for a > 1. Find f(¢)
—m <t<m or in O0<?<m are not sectionally given
continuous.

o0
7. Y b"cosnt, b<1

In each problem use ideas of this section to construct f(¢) for %

the given series.

2 1—‘,—2 cosnt

o0
8. Y b'sinnt, b<1

n=1
1 SN 201 What Fourier series expansions arise from considerations of
3. ;(_1) 2n)! the power series of each function?
S 1
4 Z(* o == b cos(2n + 1)t 9. @-272 LS
) 2n+1)! P
10. 5 54 a<1
. cos 2nt a’—z
= 1+Z 2n)! 11. e™*
n=1
12. sin z
6. Use Eq. 7.5.36 to find the Fourier series expansion of 13. cosh z
1 14. tan~! z

f@) =

a?—2a cos t+1
Hint: Subtract % from both sides of Eq. 7.5.36.
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6.1 INTRODUCTION

The physical systems studied thus far have been described primarily by ordinary dif-
ferential equations. We are now interested in studying phenomena that require partial
derivatives in the describing equations as they are formed in modeling the particular
phenomena. Partial differential equations arise where the dependent variable depends
on two or more independent variables. The assumption of lumped parameters in a
physical problem usually leads to ordinary differential equations, whereas the assump-
tion of a continuously distributed quantity, a field, generally leads to a partial differen-
tial equation. A field approach is quite common now in such undergraduate courses as
deformable solids, electromagnetics, and fluid mechanics; hence, the study of partial
differential equations is often included in undergraduate programs. Many applications
(fluid flow, heat transfer, wave motion) involve second-order equations; thus, they will
be emphasized.

The order of the highest derivative is again the order of the equation. The questions
of linearity and homogeneity are answered as before in ordinary differential equations.
Solutions are superposable as long as the equation is linear. In general, the number
of solutions of a partial differential equation is very large. The unique solution corre-
sponding to a particular physical problem is obtained by use of additional information
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arising from the physical situation. If this information is given on the boundary as
boundary conditions, a boundary-value problem results. If the information is given at one
instant as initial conditions, an initial-value problem results. A well-posed problem has just
the right number of these conditions specified to give the solution. We shall not delve
into the mathematical theory of making a well-posed problem. We shall, instead, rely
on our physical understanding to determine problems that are well posed. We caution
the reader that:

1. A problem that has too many boundary and/or initial conditions specified is not well
posed and is an overspecified problem.

2. A problem that has too few boundary and/or initial conditions does not possess a
unique solution.

In general, a partial differential equation with independent variables x and t which is
second order on each of the variables requires two bits of information (this could be
dependent on time f) at some x location (or x locations) and two bits of information at
some time ¢, usually t = 0.

We are presenting a mathematical tool by way of physical motivation. We shall
derive the describing equations of some common phenomena to illustrate the modeling
process; other phenomena could have been chosen such as those encountered in mag-
netic fields, elasticity, fluid flows, aerodynamics, diffusion of pollutants, and so on. An
analytical solution technique will then be introduced in this chapter. In a later chapter
a numerical technique will be reviewed so that solutions may be obtained to problems
that cannot be solved analytically.

We shall be particularly concerned with second-order partial differential equations
involving two independent variables, because of the many phenomena that they model.
The general form is written as

2 2 2
L S L L= e 6.1.1)
ox%? oxoy  oy? ox 0y

where the coefficients may depend on x and y but are most often constants. The equa-
tions are classed depending on the coefficients A, B, and C. They are said to be

1. Elliptic if BZ—4AC <0
2. Parabolic if B2—4AC =0 (6.1.2)
3. Hyperbolic if B>-4AC > 0

We shall derive equations of each class and illustrate the different types of solutions
for each. The boundary conditions are specified depending on the class of the partial
differential equation. That is, for an elliptic equation the function (or its derivative)
will be specified around the entire boundary enclosing a region of interest, whereas
for the hyperbolic and parabolic equations the function cannot be specified around
an entire boundary. It is also possible to have an elliptic equation in part of a region
of interest and a hyperbolic equation in the remaining part. A discontinuity would
separate the two parts of the region; a shock wave would be an example of such a
discontinuity.

In the following three sections we shall derive the mathematical equations that
describe several phenomena of general interest. The remaining sections will be devoted
to the solutions of the equations.
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6.2 WAVE MOTION

One of the first phenomena to be modeled with a partial differential equation was that
of wave motion. Wave motion occurs in a variety of physical situations; these include vi-
brating strings, vibrating membranes (drum heads), waves traveling through a solid bar,
waves traveling through a solid media (earthquakes), acoustic waves, water waves, com-
pression waves (shock waves), electromagnetic radiation, vibrating beams, and oscillating
shafts, to mention a few. We shall illustrate wave motion with several examples.

6.2.1 Vibration of a Stretched, Flexible String

The motion of a tightly stretched, flexible string was modeled with a partial differential
equation approximately 250 years ago. It still serves as an excellent introductory exam-
ple for wave motion. We shall derive the equation that describes the motion and then in
later sections present methods of solution.

Suppose that we wish to describe the position for all time of the string shown in
Fig. 6.1. In fact, we shall seek a describing equation for the deflection u of the string for
any position x and for any time f. The initial and boundary conditions will be consid-
ered in detail when the solution is presented.

Y

|
u(x, t)
|
AT

Ax
N
|
|

L }
FIGURE 6.1 Deformed, flexible string at an instant t.

Consider an element of the string at a particular instant enlarged in Fig. 6.2. We shall
make the following assumptions:

1. The string offers no resistance to bending so that no shearing force exists on a
surface normal to the string.

Mass
center

P+ AP

Ax ; u+Au

X N T Tx+Ax x

FIGURE 6.2 Small element of the vibrating string.

2. The tension P is so large that the weight of the string is negligible.
3. Every element of the string moves normal to the x axis.
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4. The slope of the deflection curve is small.
5. The mass m per unit length of the string is constant.
6. The effects of friction are negligible.

Newton’s second law states that the net force acting on a body of constant mass
equals the mass M of the body multiplied by the acceleration a of the center of mass of
the body. This is expressed as

SFE=Ma (6.2.1)

Consider the forces acting in the x direction on the element of the string. Using assump-
tion 3 there is no acceleration of the element in the x direction; hence,

D F =0 (6.2.2)
or, referring to Fig. 6.2,
(P + AP)cos(a + Aa) — Pcosa =0 (6.2.3)
Using assumption 4 we have
cosa = cos(a +Aa) =1 (6.2.4)
Equation 6.2.3 then gives us
AP =0 (6.2.5)

showing us that the tension is constant along the string.
For the y direction we have, neglecting friction and the weight of the string,

2
Psin(a + Aa) — Psina = mAxaa?[u-k%) (6.2.6)

where mAx is the mass of the element and 62/t %(u + Au/2) is the acceleration of the mass
center. Again, using assumption 4 we have

0
sin(a + Aa) = tan(a + Aa) = a—u(x + Ax, t)
X

sina = tanoa = a—u(x, t) (62.7)
Ox
Equation 6.2.6 can then be written as
ou ou 0? Au
Pl —(x+Ax,t)——(x,t) | =mAx—| u+— 2.
L’ix( ) 6x( )} 6t2( 2 j (62.8)

or, equivalently,

ox X
P —m B
e "= (u 5 ] (6.2.9)
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Now, we let Ax — 0, which also implies that Au — 0. Then, using the definition,

N L
ox

0%u
i = ,
AT30 Ax ox? (6.2.10)
our describing equation becomes
o%u o%u
— =m— 6.2.11
ox? ot? ( )

This is usually written in the form

ot? Ox?

MJE (6.2.13)
m

Equation 6.2.12 is the one-dimensional wave equation and a is the wave speed. It is a trans-
verse wave; that is, it moves normal to the string. This hyperbolic equation will be
solved in a subsequent section.

(6.2.12)

where we have set

6.2.2 The Vibrating Membrane

A stretched vibrating membrane, such as a drumhead, is simply an extension into
another dimension of the vibrating-string problem. We shall derive a partial differential
equation that describes the deflection u of the membrane for any position (x, y) and for
any time f. The simplest equation results if the following assumptions are made:

1. The membrane offers no resistance to bending, so shearing stresses are absent.

2. The tension T per unit length is so large that the weight of the membrane is
negligible.

. Every element of the membrane moves normal to the xy plane.

. The slope of the deflection surface is small.

The mass m of the membrane per unit area is constant.

. Frictional effects are neglected.

N Ul W

With these assumptions we can now apply Newton’s second law to an element of
the membrane as shown in Fig. 6.3. Assumption 3 leads to the conclusion that 7 is con-
stant throughout the membrane, since there are no accelerations of the element in the x
and y directions. This is shown on the element. In the z direction we have

> F. = Ma, (6.2.14)
For our element this becomes

2

TAxsin(a + Aa) -t Axsina + 7 Aysin(f + AB) -t Aysin f = mAxAyZTZ (6.2.15)
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TAx

]
TAx | EOH'AO‘
! 1
i i !
| ! | i
TAy| B+AB | !
I
i | ] | y
| | | |
i | | |
oy ) ‘ L (x, y + Ay)
|
|
|
x |
|
(x+Ax, 1) (x + Ax, y + Ay)

FIGURE 6.3 Element from a stretched, flexible membrane.

where the mass of the element is m Ax Ay and the acceleration a, is 92u/0t%. Recognizing
that for small angles

Ax
2

sin(a+Aa);tan(a+Aa)=Z—u[x+ Y+ Ay, tj
Y

. 6u[ Ax j
sina Ztana = —|x+—, Yy, t
oy 2

(6.2.16)

sin(B + AB) = tan(B + AB) = %(x+ Ax, y + Azy' t)

sin 8 ;tanﬁzg—u(x, y+A2y, tj
X

we can then write Eq. 6.2.15 as

rAxB;(JHAzx,y+Ay,tj—Z;l(x+A2x,y,tﬂ
ou Ay ou Ay J o%u
Ay| — Ax, —,t|-—|x,y+—,t||=mAxAy—- 6.2.17
+7 y{ax(x+ X, Y+ > j 8x(xy+ 2 } mAx yatz ( )
or, by dividing by Ax Ay,
ou Ax au( Ax )
—x+ s Y+ Ay, t|-—| x+ sy, t
. ay[x 2 YT ) oy\" T2
Ay
u( Y ou Ay
—| X +Ax, Yy +—— t)——(x,y+—, tj >
+0x ox 2" )\, 0 (6.2.18)
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Taking the limit as Ax — 0 and Ay — 0, we arrive at

o%u (0%  0%u
=g =+ = 2.1
ot? [8x2 oy? (6.2.19)
where
0= - (6.2.20)
m

Equation 6.2.19 is the two-dimensional wave equation and a is the wave speed.

6.2.3 Longitudinal Vibrations of an Elastic Bar

For another example of wave motion, let us determine the equation describing the mo-
tion of an elastic bar (steel, for example) that is subjected to an initial displacement or
velocity. An example would be striking the bar on the end with a hammer, Fig. 6.4. We
make the following assumptions:

1. The bar has a constant cross-sectional area A in the unstrained state.
2. All cross-sectional planes remain plane.

3. The density p remains constant throughout the bar.

4. Hooke’s law may be used to relate stress and strain.

y RN

FIGURE 6.4 Wave motion in an elastic bar.

We let u(x, t) denote the displacement of the plane of particles that were at x at t =0.
Consider the element of the bar between x; and x,, shown in Fig. 6.5. We assume that
the bar has mass p per unit volume. The force exerted on the element at x; is, by Hooke’s
law,

F, = area x stress = area x E x strain, (6.2.21)
where E is the modulus of elasticity. The strain € at x; is given by

elongation
e=—— O (6.2.22)
unstrainedlength

Thus, for Ax; small, we have the strain at x; as

u(xl + Axl/t) - u(xllt)

€= " (6.2.23)
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FIGURE 6.5 Element of an elastic bar.

Letting Ax; — 0, we find that

ou
e=2
ox

Returning to the element, the force acting in the x direction is
E, :AEF—%Z, -, t)}
ox ox

Newton’s second law states that

F, =ma
62
=pA(xXy —x1)—
PA(xz —x1) o2
Hence, Egs. 6.2.25 and 6.2.26 give

82
A(x, —x
pA(xs 1)6t2

0x
We divide Eq. 6.2.27 by (x, — x;) and let x — x,, to give

ot? ox?

where the longitudinal wave speed a is given by

E
a= |—
1o}

o AE{a—u(xz, t) - Z—”(xl, t)}
X
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(6.2.24)

(6.2.25)

(6.2.26)

(6.2.27)

(6.2.28)

(6.2.29)

Therefore, longitudinal displacements in an elastic bar may be described by the one-

dimensional wave equation with wave speed /E/p.

6.2.4 Transmission-Line Equations

As a final example of wave motion, we shall derive the transmission-line equations.
Electricity flows in the transmission line shown in Fig. 6.6, resulting in a current flow
between conductors due to the capacitance and conductance between the conductors.
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The cable also possesses both resistance and inductance resulting in voltage drops along
the line. We shall choose the following symbols in our analysis:

v(x, t) = voltage at any point along the line
i(x, t) = current at any point along the line
R = resistance per meter
L = self-inductance per meter
C = capacitance per meter

G = conductance per meter

| Ax |
i(x, t) ‘ ‘ i(x + Ax, t)
e —_—
Conductor () [ [ )
F \\\ i+
| |
o(x, ) ! i Ai ! v(x + Ax, t)
1
o .
| ’ |
1 1
Conductor Q ! ! )
- T——
i) | T 7 lix+Axt)
' Av '
(a) Actual element
LAx RAx i(x + Ax, t)

i(x + Ax, t)

(b) Equivalent circuit

FIGURE 6.6 Element from a transmission line.
The voltage drop over the incremental length Ax at a particular instant (see Egs. 1.4.3) is
. 0i
Av =v(x + Ax, t) —v(x, t) = -iIRAx — LAxa—: (6.2.30)

Dividing by Ax and taking the limit as Ax — 0 yields the partial differential equation
relating v(x, t) and i(x, t),

ov oi
—+iR+L—=0
ox o (6.2.31)

Now, let us find an expression for the change in the current over the length Ax. The
current change is

0
Ai = i(x + Ax,f)— i(x,f) = -GAx v — CAxait’ (6.2.32)
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Again, dividing by Ax and taking the limit as Ax — 0 gives a second equation,

6— +0G +C— (6.2.33)
ox
Take the partial derivative of Eq. 6.2.31 with respect to x and of Eq. 6.2.33 with respect
to t. Multiplying the second equation by L and subtracting the resulting two equations,
using 02i/0x ot = 62i/ot Ox, presents us with
% o ov 0%
—+

R— = LG— LC— 2.34
0Ox? ox ot ot? (6234)

Then, substituting for 6i/0x from Eq. 6.2.33 results in an equation for v(x, ) only. It is

2,

2 > LC— +(LG+ RC)— +RGo (6.2.35)
Take the partial derivative of Eq. 6.2.31 with respect to t and multiply by C; take the

partial derivative of Eq. 6.2.33 with respect to x, subtract the resulting two equations and

substitute for 0v/0x from Eq. 6.2.31; there results

62

Pt ch +(LG + RC)— + RGi (6.2.36)
The two equations above are difficult to solve in the general form presented; two

special cases are of interest. First, there are conditions under which the self-inductance,

and leakage due to the conductance between conductors, are negligible; that is, L = 0,

and G = 0. Then our equations become

2
00 _re®
ot ot (6.2.37)
0% 0i
— RC -
ox? ot

Second, for a condition of high frequency a time derivative increases the magnitude of
a term*; that is, 8%/0t? >> 6i/0t > i. Thus, our general equations can be approximated by

1%
ot LC ox? (62.39)
ot LC ox?

*As an example, consider the term sin (ot + x/L) where @ > 1. Then

(o) oss{or+ )
—|sin| ot + — | | = @ cos| ot + —
ot L L

We see that
x . X
w Cos a)t+f) sm(wt-*—fj
( L L

>
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These latter two equations are wave equations with the units on ,/1/LC of
meters/second.

Although we shall not discuss any other wave phenomenon, it is well for the reader
to be aware that sound waves, light waves, water waves, quantum-mechanical systems,
and many other physical systems are described, at least in part, by a wave equation.

6.3 THE D'’ALEMBERT SOLUTION
OF THE WAVE EQUATION

Itis possible to solve all the partial differential equations that we have derived in this chap-
ter by a general method, the separation of variables. The wave equation can, however, be
solved by a more special technique that will be presented in this section. It gives a quick
look at the motion of a wave. We obtain a general solution to the wave equation

0% , 0%
Srea (63.1)

by a proper transformation of variables. Introduce the new independent variables &(xi)
and 1 (eta):

E=x-—at, n=x+at (6.3.2)
Then, using the chain rule we find that

ou 6146(;‘ 8u6n 6u ou

ox 85 ox an ox 65 817

(6.3.3)
ou _ ou 65 ouon _ 6u+ ou
o o¢ ot on ot o on
and
ou ou
0| — 0| —
*u _\ox %+ ox @_62u+262u+62u
a2 oE @ on ox 0Er “ogon on?
x S Ox n ox 0 con on (6.34)

ou ou
ou o o0& o on _ 0% 2u 0%
= + — -202 ——— +4?

a2 e ot o o | eer acon  on?

Substitute the expressions above into the wave equation to obtain

2 2 2 2 2 2
22 Q—Z 0“u 8 _ 2 0“u ‘o o0“u 6 635)
og7 “ogon on? oe2 " Tazan on?

and there results
o%u
o0& on

(6.3.6)
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Integration with respect to & gives

gl = h(n) 6.37)
n

where h(n) is an arbitrary function of 1 (for an ordinary differential equation, this would
be a constant). A second integration yields

W& n) = [ hm)dn + (&) (6.3.8)

The integral is a function of 1 only and is replaced by f(1), so the solution is
us,m) = gE)+ fn) (6.3.9)
or, equivalently,
u(x,t) = g(x —at) + f(x + at) (6.3.10)

This is the D" Alembert solution of the wave equation.

Inspection of the equation above shows the wave nature of the solution. Consider
an infinite string, stretched from —oo to +wo, with an initial displacement u(x, 0) =
g(x) +f(x), as shown in Fig. 6.7. At some later time f = t; the curves g(x) and f(x) will sim-
ply be displaced to the right and left, respectively, a distance at;. The original deflection
curves move without distortion at the speed of propagation a.

f=0 u(x, 0)
/‘&éf(x) and g(x)

(a) Initial displacement

fx +aty) glx —aty)
- —

e s —

\ \
‘ ah ah ! String

(b) Displacement after a time ¢,

FIGURE 6.7 Traveling wave in a string.

To determine the form of the functions g(x) and f(x) when u(x, 0) is given, we use
the initial conditions. The term 9%u/0t? in the wave equation demands that two bits of
information be given at t = 0. Let us assume, for example, that the initial velocity is zero
and that the initial displacement is given by

u(x,0) = f(x) + g(x) = ¢(x) (6.3.11)
The velocity is

ou d d
ou _dgog  df on (63.12)
ot dé ot dn ot
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At t =0 this becomes (see Egs. 6.3.2 and 6.3.10)

ou _dg. . df
= @ =0 (6.3.13)

Hence, we have the requirement that

dg _ df
= 6.3.14
dx dx ( )
which is integrated to provide us with
g=f+C (6.3.15)
Inserting this in Eq. 6.3.11 gives
¢(x) _C
=22 = 3.1
f=="-7 (6.3.16)
so that
¢(x) C
=—+— 3.17
gt =2+ 2 (6.3.17)

Finally, replacing x in f(x) with x + at and x in g(x) with x — at, there results the specific
solution for the prescribed initial conditions,

u(x, t) = %qb(x —at)+ %(/)(x + at) (6.3.18)

Our result shows that, for the infinite string, two initial conditions are necessary to
determine the solution. A finite string will be discussed in the following section.

Example 6.1

Consider that the string in this article is given an initial velocity 0(x) and zero initial
displacement. Determine the form of the solution.

Solution
The velocity is given by Eq. 6.3.12:
ou_dgoz & on
ot de ot dn ot
At t = 0 this takes the form

This is integrated to yield

f—g:;jxe(s)dS+C

0
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where s is a dummy variable of integration. The initial displacement is zero, giving

ux,0) = f(x)+8(x) =0
or,
f(x) =-g(x)
The constant of integration C is thus evaluated to be
C = 2£(0) = -2g(0)

Combining this with the relation above results in

o= owis+ 50
aJo

s =5 | o+ 50

0

Returning to Eq. 6.3.10, we can obtain the solution u(x, t) using the forms above for
f(x) and g(x) simply by replacing x by the appropriate quantity. We then have the

solution
1 x+at x—at
u(x, t) = “A 0(s)ds —I G(S)ds}
2a| J, 0

1 x+at 0
= UA 0(s)ds +J‘ 0(s)ds}
2a 0 x—at

x+at

1

=— 0(s)d
2a x—at (S) ’

For a given 0(x) this expression would provide us with the solution.

Example 6.2

An infinite string is subjected to the initial displacement

)
1+9x2

¢(x)

Find an expression for the subsequent motion of the string if it is released from rest.
The tension is 20 N and the mass per unit length is 5 x 10 kg/m. Also, sketch the
solution for t =0, t =0.002 s, and ¢t = 0.01 s.

Solution
The motion is given by the solution of this section. Equation 6.3.18 gives it as

_1_ 002 1 0w
21+9(x —at)®> 2 1+9(x+at)?

u(x, t)

257
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The wave speed a is given by

The solution is then

0.01 0.01

u(x, t) = +
(1) 1+9(x —200t)2 1+ 9(x + 200¢t)?

The sketches are presented in Fig. 6.8.

t=0.002s

001, 0.01

1+9(x +2)? 1+ 9(x - 2)2

~ ) | \=
Il Il
-2 2

t=0.01s
FIGURE 6.8

6.4 SEPARATION OF VARIABLES

We shall now present a powerful technique used to solve many of the partial differen-
tial equations encountered in physical applications in which the domains of interest
are finite. It is the method of separation of variables. Even though it has limitations, it is
a widely used technique. It involves the idea of reducing a more difficult problem to
several simpler problems; here, we shall reduce a partial differential equation to several
ordinary differential equations for which we already have methods of solution. Then,
hopefully, by satisfying the initial and boundary conditions, a solution to the partial
differential equation can be found.
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To illustrate the details of the method, let us use the mathematical description of a
finite string of length L that is fixed at both ends and is released from rest with an initial
displacement. The motion of the string is described by the wave equation

0%u 5 0%

We shall, as usual, consider the wave speed a to be a constant. The boundary conditions
of fixed ends may be written as

u(0,t)=0 (6.4.2)
and

u(lL,t)=0 (6.4.3)
Since the string is released from rest, the initial velocity is zero; hence,

ou
E(X' 0)=0 (6.4.4)

The initial displacement will be denoted by f(x); we then have
u(x, 0) = f(x) (6.4.5)
We assume that the solution of our problem can be written in the separated form
u(x, t) = X(x)T(¢t) (6.4.6)

that is, the x variable separates from the t variable. Substitution of this relationship into
Eq. 6.4.1 yields

X(x)T"(t) = a2X"(x)T(t) (6.4.7)

where the primes denote differentiation with respect to the associated independent
variable. Rewriting Eq. 6.4.7 results in
T” _ X/l
a’T X

(6.4.8)

The left side of this equation is a function of f only and the right side is a function of x
only. Thus, as we vary t holding x fixed, the right side cannot change; this means that
T"(t)/a?T(t) must be the same for all t. As we vary x holding # fixed the left side must not
change. Thus, the quantity X"(x)/X(x) must be the same for all x. Therefore, both sides
must equal the same constant value u(mu) sometimes called the separation constant.
Equation 6.4.8 may then be written as two equations:

T" - 1ua®T =0 (6.4.9)
X" - uX =0 (6.4.10)

We note at this point that we have separated the variables and reduced a partial dif-
ferential equation to two ordinary differential equations. If the boundary conditions can be
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satisfied, then we have succeeded with our separation of variables. We shall assume
that we need to consider u only as a real number. Thus, we are left with the three cases;
u>0
u=0 (6.4.11)
u<o

For any nonzero value of i, we know that the solutions of these second-order ordinary
differential equations are of the form e™ and e, respectively (see Section 1.5). The char-
acteristic equations are

m? — pa® =0 (6.4.12)
n?—pu=0 (6.4.13)

The roots are
my = a\/ﬁ, My = —a\/; (6.4.14)

mo=\u, ny=-Ju (6.4.15)

The resulting solutions are

T(t) = cleﬁ’” + cze’\/z‘” (6.4.16)
and

X(x) = czeVH* + c4e‘\/;" (6.4.17)

Now, consider the three cases, >0, u =0, and p < 0. For u > 0, we have the result that
u is a real number and the general solution is

u(x, t) = T(HX(x) = (ceV9% + e VHa) (caeVir 4 cyoIir) (6.4.18)

which is a decaying or growing exponential. The derivative of Eq. 6.4.18 with respect to
time would yield the velocity and it, too, would be growing or decaying with respect
to time. This, of course, means that the kinetic energy of an element of the string would
be increasing or decreasing in time, as would the total kinetic energy. However, energy
remains constant; therefore, this solution violates the basic law of physical conservation
of energy. The solution also does not give the desired wave motion and the boundary
and initial conditions cannot be satisfied; thus, we cannot have y > 0. Similar arguments
prohibit the use of u= 0. Hence, we are left with u < 0; for simplicity, let

Ju=ip (6.4.19)
where B is a real number and i is V-1. For this case, Eq. 6.4.16 becomes
T(t) = cqeiPt + cpe—iPat (6.4.20)
and Eq. 6.4.17 becomes
X(x) = c3eP* + cyeihx (6.4.21)
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Using the relation

e = cos@ +isinf (6.4.22)

Egs. 6.4.20 and 6.4.21 may be rewritten as

T(t) = Asin Bat + Bcos Bat (6.4.23)
and

X(x) = Csin Bx + Dcos Bx (6.4.24)

where A, B, C, and D are new constants. The relation of the new constants in terms of the
constants ¢y, ¢,, ¢3, and ¢, is left as an exercise.

Now that we have solutions to Eqgs. 6.4.9 and 6.4.10 that are periodic in time and
space, let us attempt to satisfy the boundary conditions and initial conditions given in
Egs. 6.4.2 through 6.4.5. Our solution thus far is

u(x, t) = (Asin Bat + Bcos fat)(Csin Sx + Dcos fx) (6.4.25)
The boundary condition u(0, t) = 0 states that u is zero for all t at x = 0; that is,
u(0, t) = (Asin Bat + Bcos fat)D = 0 (6.4.26)
The only way this is possible is to have D = 0. Hence, we are left with
u(x, t) = (Asin fat + Bcos fat)Csin Sx (6.4.27)

The boundary condition u(L, ) = 0 states that u is zero for all t at x = L; this is expressed
as

u(L, t) = (Asin Bat + Bcos Bat)Csin SL (6.4.28)
This is possible if
sinBL=0 (6.4.29)
For this to be true, we must have
BL=nx, n=1,2,3, (6.4.30)

or B = nn/L; the quantity 3 is called an eigenvalue. When the f is substituted back into
sin fx, the function sin nmx/L is called an eigenfunction. Each eigenvalue corresponding to
a particular value of n produces a unique eigenfunction. Note that the n = 0 eigenvalue
(1= 0) has already been eliminated as a possible solution, so it is not included here. The
solution given in Eq. 6.4.27 may now be written as

At | peos ””T“tjcsin@ (6.431)

L

u(x,t) = (A sin

For simplicity, let us make the substitutions

AC =4ay,, BC = bn (6432)



262 Chapter 6/ Partial Differential Equations

since each value of # may require different constants. Equation 6.4.31 is then

u,(x, t)= (an sinnﬂTat +b,, cos niat]sin% (6.4.33)

where the subscript n has been added to u(x, t) to allow for a different function for each
value of n.

For our vibrating string, each value of n results in harmonic motion of the string
with frequency na/2L cycles per second (hertz). For n = 1 the fundamental mode results,
and for n > 1 overtones result; see Fig. 6.9. Nodes are those points of the string which do
not move. The velocity ou,, /0t is then

%" = %{ ycos % _p sin ”””t)sinL” (6:4.34)

n=4
FIGURE 6.9 Harmonic motion. The solution at various values of time tis as shown.

Thus, to satisfy b.c. (6.4.4),

ou, nra . NTX
,00=—a,sin— =0 4.
o (x,0) i a, sin i (6.4.35)

for all x, we must have a, = 0. We are now left with

nrat in nrwx (6.4.36)

u,(x,t)=b, cos
(x, 1) T

If we are to solve our problem, we must satisfy boundary condition (6.4.5),
u,(x,0) = f(x) (6.4.37)

But, unless f(x) is a multiple of sin nzx/L, no one value of n will satisfy Eq. 6.4.37. How
do we then satisfy the boundary condition u(x, 0) = f(x) if f(x) is not a sine function?

Equation 6.4.36 is a solution of Eq. 6.4.1 and satisfies Egs. 6.4.2 through 6.4.4 for all
n,n=1,2,3, ... Hence, any linear combination of any of the solutions

Uy (x,t) = b, cos m;at sinnLLx, n=12,3,-- (6.4.38)
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is also a solution, since the describing equation is linear and superposition is allowed.
If we assume that for the most general function f(x) we need to consider all values of #,
then we should try

0 0

u(x, t) = Zun (x, 1) = an cos ”’Z’” sin ”’i al (6.4.39)

n=1 n=1

For the i.c. (6.4.5), we then have

u(x, 0) = an sin% - f(x) (6.4.40)
n=1

If constants b, can be determined to satisfy Eq. 6.4.40, then we have a solution anywhere
that the sum in Eq. 6.4.39 converges. The series in Eq. 6.4.40 is a Fourier sine series. It was
presented in Section 1.10, but the essential features will be repeated here.

To find the b,’s, multiply the right side of Eq. 6.4.40 by sin mnx/L to give

mrx nwx mrx
sin b, sin—— = f(x)sin
L Z " L fx) L
n=1

(6.4.41)

Now integrate both sides of Eq. 6.4.41 from x = 0 to x = L. We may take sin mmx/L inside
the sum, since it is a constant as far as the summation is concerned. The integral and the
summation may be switched if the series converges properly. This may be done for most
functions of interest in physical applications. Thus, we have

2 L L
an sin 2% sin " gy = | f(x)sin 2% dx (6.4.42)
oL L 0 L
n=1
With the use of trigonometric identities we can verify* that
L 0 ifm=#n
I sin P gin ™M X g =0 (6.4.43)
0 L L — ifm=n
2
Hence, Eq. 6.4.42 gives us
L
2 . NTX
b, :ZIO f(x)sdex (6.4.44)
if f(x) may be expressed by
. NmX
flo= an sin—— (6.4.45)
n=1

Equation 6.4.45 gives the Fourier sine series representation of f(x) with the coefficients
given by Eq. 6.4.44. Examples will illustrate the use of the above equations for particular
functions f(x).

*Use the trigonometric identities sinasin 8 = %[cos (a - B)—cos(a + B)] and sin?a = %— %cos 2a.



264 Chapter 6/ Partial Differential Equations

Example 6.3

A tight string 2 m long with a = 30 m/s is initially at rest but is given an initial velocity
of 300 sin 47mx from its equilibrium position. Determine the maximum displacement
at the x = ¢ m location of the string.

Solution
We assume that the solution to the describing differential equation

0%u 0%u

a2 o
can be separated as
u(x, t) = T(t)X(x)

Following the procedure of the previous section, we substitute into the describing
equation to obtain

1 1" 3 Xn 5

N _p2
00T X F

where we have chosen the separation constant to be - so that an oscillatory motion
will result. The two ordinary differential equations that result are

T" +90082T =0
X"+ B%2X =0
The general solutions to the equations above are
T(t) = Asin308t + Bcos 30t
X(x) = Csin Bx + Dcos Bx
The solution for u(x, t) is then
u(x, t) = (Asin 308t + Bcos 308¢)(Csin Bx + D cos Bx)
The end at x = 0 remains motionless; that is, #(0, ) = 0. Hence,
u(0, t) = (Asin 308t + Bcos308t)(0 + D) =0
Thus, D = 0. The initial displacement u(x, 0) = 0. Hence,
u(x,0)=(0+ B)Csin fx =0
Thus, B = 0. The solution reduces to

u(x, t) = ACsin308tsin Bx
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The initial velocity ou/ot is given as 300 sin 47x. We then have, at t =0,
Z—IZ = 30BACsin Bx = 300sindrx
This gives
300 2.5

30(47) 7

B =4r, AC=
The solution for the displacement is finally
u(x, t) = EsianOmfsin 4rx

/4

We have not imposed the condition that the end at x =2 m is motionless. Insert x = 2
in the expression above and it is obvious that this boundary condition is satisfied;
thus we have found an acceptable solution.

The maximum displacement at x = 1/8 m occurs when sin 120zt = 1. Thus, the
maximum displacement is

2.5
Umax = m
T

Note that we did not find it necessary to use the general expression given by
Eq. 6.4.39. We could have, but it would have required more work to obtain a solution.
This happened because the initial condition was given as a sine function. Any other
function would require the more general form given by Eq. 6.4.39.

Example 6.4

Determine several coefficients in the series solution for u(x, t) for the vibrating string if

() = 0.1x 0<x<1
F®)=102_01x 1<x<2

The string is 2 m long. Use the boundary and initial conditions of Section 6.4.

Solution
The solution for the displacement of the string is given by Eq. 6.4.39. It is

o0

nwat . Nwx

u(x, t) = E b, cos sin——
n=1

2 2

where we have used L =2 m. The coefficients b, are related to the initial displacement
f(x) by Eq. 6.4.44,

2 (2 nwx
b, :EJ.O f(x)sianx

265
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Substituting for f(x) results in

1 2
b, = 0.1J‘ xsin@dijj @ - x)sin X gy
0 2 1 2

Performing the integrations (integration by parts* is required) gives

2x nrx 4 nrx ]t
bn:O.l{——cos—Jr sin—}
nn 2 nPg? 2 1y
4 nrx 2x nwx 4 . nmx 2
+0.1) ——cos—— + —cos—— — sin——
nm 2 mm 2 n’g? 2

By being careful in reducing this result, we have

08 . nm
"=y s1n7
This gives several b,’s as
0.8 0.8 0.8
by =—, b,=0, b3=———, by=0, bs=——+
1T a2 z ? 92 ¢ " 2572
The solution is, finally,
0.8 wat . mwx 1 3mat . 3mx
u(x,t) = —| cos—sin— — —cos in——
2 2 2 9 2 2
1 Smat . 5nx }
+ —cos sin——+---
25 2

We see that the amplitude of each term is getting smaller and smaller. A good approx-
imation results if we keep several terms (say five) and simply ignore the rest. This,
in fact, was done before the advent of the computer. With the computer many more
terms can be retained, with accurate numbers resulting from the calculations. A com-
puter plot of the solution above is shown in Fig. 6.10 for 2 = 100 m/s. One hundred
terms were retained.

0.10 —
t=0.0

it | = £=0.008s

0.02/—

u(x, t)

-0.02"—
t=0.016s

-0.06 —

-0.10 * * * *
0.00 0.40 0.80 120 1.60 i

FIGURE 6.10

*We shall integrate J'O” xsinxdx by parts. Let u = x and dv = sin x dx. Then du = dx and v = —cos x. The inte-

. T . L
gral is then Jo xsinxdx= —xcosx‘g +_[0 cosxdx=r.
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Example 6.5

A tight string, 7 m long and fixed at both ends, is given an initial displacement f(x)
and an initial velocity g(x). Find an expression for u(x, ).

Solution
We follow the steps of Section 6.4 and find the general solution to be
u(x, t) = (Asin Bat + Bcos fBat)(Csin Sx + D cos x)

Using the b.c. that the left end is fixed, that is, u(0, t) = 0, we have D = 0. We also have
the b.c. that u(rx, ) = 0, giving

0= (A sin Bat + B cos PBat)C sin fr.
If we let C =0, a trivial solution results, u(x, t) = 0. Thus, we must let
pr =nn
or B=n, an integer. The general solution is then
u,(x, t) = (a, sinnat + b,, cos nat)sin nx

where the subscript n on u,,(x, t) allows for a different u(x, t) for each value of n. The
most general u(x, t) is then found by superposing all of the u,(x, t); that is,

u(x, t) = ZMW(x, )= Z(an sinnat + b,, cos nat)sin nx (1)
n=1

n=1

Now, to satisfy the initial displacement, we require that
u(x,0) = an sinnx = f(x)
n=1

Multiply by sin mx and integrate from 0 to 7. Using the results indicated in Eq. 6.4.43,
we have

b, = EJ‘ ”f(x)sinnxdx ()
TJo

Next, to satisfy the initial velocity, we must have
0 Zm :
a—btl(x,O) = ayansinnx = g(x)
n=1

Again, multiply by sin mx and integrate from 0 to 7. Then
2 (7
a,=——| g(x)sinnxdx 3)
anm J
Our solution is now complete. It is given by Eq. 1 with the b, provided by Eq. 2 and
the a, by Eq. 3. If f(x) and g(x) were specified numerical values for each b, and a,
would result.
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Example 6.6

A tight string, #m long, is fixed at the left end but the right end moves, with displace-
ment 0.2 sin 15¢. Find u(x, t) if the wave speed is 30 m/s and state the initial condi-
tions if a solution using separation of variables is to be possible.

Solution
Separation of variables leads to the general solution as

u(x, t) = (Asin 308t + Bcos308¢)(Csin Bx + D cos Bx)

The left end is fixed, requiring that #(0, t) = 0. Hence, D = 0. The right end moves with
the displacement 0.2 sin 15¢; that is,

u(r, t) = 0.2sin15¢ = (Asin 308t + Bcos308t)Csin B

This can be satisfied if we let

B=0, B==, AC =02
The resulting solution for u(x, t) is
u(x, t) = 0.2sin 15tsin%
The initial displacement u(x, 0) must be zero and the initial velocity must be
%(x, 0) = 3sin§

Any other set of initial conditions would not allow a solution using separation of
variables.

Example 6.7

A tight string is fixed at both ends. A forcing function (this could be due to wind
blowing over a wire), applied normal to the string, is given by F(t) = Km sin t kilo-
grams per meter of length. Show that resonance occurs whenever o= anm/L.

Solution

The forcing function F(t) multiplied by the distance Ax can be added to the right-
hand side of Eq. 6.2.8. Dividing by mAx results in

2 2
RO R
ox?  ot?

where a2 = P/m. This is a nonhomogeneous partial differential equation, since the last
term does not contain the dependent variable u(x, t). As with ordinary differential
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equations that are linear, we can find a particular solution and add it to the solution
of the associated homogeneous equation to form the general solution.

We assume that the effect of the forcing function will be to produce a displace-
ment having the same frequency as the forcing function, as was the case with lumped
systems. This suggests that the particular solution has the form

u,(x, t) = X(x)sin ot
Substituting this into the partial differential equation gives
a*X"sinowt = —Xo? sinot + Ksinot

The sin ot divides out and we are left with the ordinary differential equation
2
x+ 2 x-K
P

The general solution to this nonhomogeneous differential equation is (see Section 1.8)

) o  Ka?
X(x) =cy8in—2x+cyCOS—X +——
a a ®

We will force this solution to satisfy the end conditions that apply to the string. Hence,
2
X0)=0=c,+ K%
®

2
X(L)=0=¢ sinw—L +Cy cosw—L + KLZ
a a o

The equations above give
Ka? ol
Ka? 0\
- sin(wL/a)

The particular solution is then
oL
Ka2| €08~ — 1

. X x .
uy(x, t) = =r — 4 _sin— — cos— + 1 |sin wt
o* | sin(wL/a) a a

The amplitude of the above becomes infinite whenever sin wL/a2 =0 and cos wL/a =-1.
This occurs whenever

oL _on-1r
a

269



270 Chapter 6/ Partial Differential Equations

Hence, if the input frequency is such that

o= 2n-1ra

7 7’1:1,2,3,"'
L

the amplitude of the resulting motion becomes infinitely large. This equals the natu-
ral frequency corresponding to the fundamental mode or one of the significant over-
tones of the string, depending on the value of #. Thus, we see that a number of input
frequencies can lead to resonance in the string. This is true of all phenomena modeled
by the wave equation. Recall that we have neglected any type of damping.

6.5 DIFFUSION

Another class of physical problems exists that is characterized by diffusion equations.
Diffusion may be likened to a spreading, smearing, or mixing. A physical system that
has a high concentration of variable ¢ in volume A and a low concentration of ¢ in vol-
ume B may tend to diffuse so that the concentrations in A and B approach equality. This
phenomenon is exhibited by the tendency of a body toward a uniform temperature. One
of the most common diffusion processes that is encountered is the transfer of energy in
the form of heat.

From thermodynamics we learn that heat is thermal energy in transit. It may be
transmitted by conduction (when two bodies are in contact), by convection (when a
body is in contact with a liquid or a gas), and by radiation (when energy is transmitted
by energy waves). We shall consider the first of these mechanisms in some detail. Ex-
perimental observations have been organized to permit us to make the following two
statements:

1. Heat flows in the direction of decreasing temperature.
2. The rate at which energy in the form of heat is transferred through an area is
proportional to the area and to the temperature gradient normal to the area.

These statements must be expressed analytically. The heat flux through an area A ori-
ented normal to the x axis is

oT
Q=-KAZ- (6.5.1)

where Q (watts per second, W/s) is the heat flux, 0T/0x is the temperature gradient
normal to A, and K (W/m-s-K) is a constant of proportionality called the thermal con-
ductivity. The minus sign is present since heat is transferred in the direction opposite the
temperature gradient.

The energy (usually called internal energy) gained or lost by a body of mass m that
undergoes a uniform temperature change AT is expressed as

AE = CmAT (6.5.2)

where AE (W) the energy change of the body and C (W/kg-K) is a constant of propor-
tionality called the specific heat.



Sec. 6.5/ Diffusion

Conservation of energy is a fundamental law of nature. We shall use this law to
make an energy balance on the element in Fig. 6.11. The density p of the element will be
used to determine its mass, namely,

m=pAxAyAz (6.5.3)
z
C /G y
|
! Y /
|
WA S
QG +A% y,z+42) B 8 Qe Ay oy 2+ &)
— | gal
|
(x, y, Z)~\71\5 777777 Ly
/// Ax
E

FIGURE 6.11 Element of mass.

By energy balance we mean that the net energy flowing into the element in time At must
equal the increase in energy in the element in At. For simplicity, we shall assume that
there are no sources inside the element. Equation 6.5.2 gives the change in energy in the
element as

AE =CmAT = CpAx Ay AzAT (6.5.4)
The energy that flows into the element through face ABCD in At is, by Eq. 6.5.1,

oT
AEABCD = QABCD At = —-KAxAz— At (655)

x+Ax/2

y
z+Az/2

where we have approximated the temperature derivative by the value at the center of
the face. The flow into the element through face EFGH is

AEEFGH = KAx Aza—T At (656)

x+Ax/2

y+ay
z+Az/2

Similar expressions are found for the other four faces. The energy balance then pro-
vides us with

AE = AE ppcp + AEprgy + AE sppe + AEpcer + AEphce + AEprea (6.5.7)
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or, using Eqgs. 3.5.5, 3.5.6, and their counterparts for the x and z directions,

T T
CpAxAyAzAT = KAxAz T _a At
X+Ax/2 ay X+Ax/2
y+Ay y
z+Az/2 z+Az/2
+KAyAz a _aT At
ox x+Ax ox x
y+Ay/2 y+Ay/2
z+Az/2 z+Az/2
+KAxAy ar _or At (6.5.8)
0z x+Ax/2 0z x+Ax/2
y+Ay/2 y+Ay/2
z+Az z

Both sides of the equation are divided by Cp Ax Ay Az At, then let Ax — 0, Ay — 0,
Az — 0, At — 0; there results

oT [o*T o°T &°T
—1{ } (6.5.9)

—=k|l—+—+—
ot ox*  oy*  0z°
where k = K/Cp is called the thermal diffusivity and is assumed constant. It has dimen-
sions of square meters per second (m?s). Equation 6.5.9 is a diffusion equation

Two special cases of the diffusion equation are of particular interest. A number of
situations involve time and only one coordinate, say x, as in a long, slender rod with

insulated sides. The one-dimensional heat equation then results. It is given by
or o'
—=k— 6.5.10
ot ox? ( )

which is a parabolic equation.
In some situations 0T/0t is zero and we have a steady-state condition; then we no
longer have a diffusion equation, but the equation

0T 82T  o°T _

ax72+$+67 =0 (6.5.11)

This equation is known as Laplace’s equation. It is sometimes written in the shorthand form
V2T =0 (6.5.12)

If the temperature depends only on two coordinates x and y, as in a thin rectangular
plate, an elliptic equation is encountered,

02T o°T

Cylindrical or spherical coordinates (see Fig. 6.12) should be used in certain geome-
tries. It is then convienient to express V2T in cylindrical coordinates as

10( or 1 02T o°T
V2T = | rZ— |+ —2 "+ =0 .5.14
r ar[ ar] 1’2 602 aZZ (65 )
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and in spherical coordinates as

2
V2T - Li[rzalj oL 0T, 1 00t (65.15)
r2or\" or) r2sin?¢ 002 r2sing 8¢ o9

X

(a) Cylindrical coordinates (b) Spherical coordinates

FIGURE 6.12 Cylindrical and spherical coordinates.

Our discussion of heat transfer has included heat conduction only. Radiative and
convective forms of heat transfer would necessarily lead to other partial differential
equations. We have also assumed no heat sources in the volume of interest, and have
assumed the conductivity K to be constant. Finally, the specification of boundary and
initial conditions would make our problem statement complete. These will be reserved
for the following section in which a solution to the diffusion equation is presented.

6.6 SOLUTION OF THE DIFFUSION EQUATION

This section will be devoted to a solution of the diffusion equation developed in
Section 6.5. Recall that the diffusion equation is

T 2T 92T 8°T
9 —k(a 0 6J (6.6.1)

i R e
ot ox?  oy?  oz?

Heat transfer will again be used to illustrate this very important phenomenon. The pro-
cedure developed for the wave equation will be used, but the solution will be quite dif-
ferent, owing to the presence of the first derivative with respect to time rather than the
second derivative. This requires only one initial condition instead of the two required by
the wave equation. We shall illustrate the solution technique with three specific situations.

6.6.1 A Long, Insulated Rod with Ends at Fixed Temperatures

Along rod, shown in Fig. 6.13, is subjected to an initial temperature distribution along
its axis; the rod is insulated on the lateral surface, and the ends of the rod are kept at the
same constant temperature.* The insulation prevents heat flux in the radial direction;

*We shall choose the temperature of the ends in the illustration to be 0°C. Note, however, that both ends could
be held at any temperature T). Since it is necessary to have the ends maintained at zero, we would simply
define a new variable 6 = T — T, so that 6 = 0 at both ends. We would then find a solution for 6(x, t) with the
desired temperature given by T(x, t) = 0(x, t) + T.
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7

L

M

i,

7

FIGURE 6.13 Heated rod.

hence, the temperature will depend on the x coordinate only. The describing equation is
then the one-dimensional heat equation, given by Eq. 6.5.10, as

% - k% (6.6.2)
We shall choose to hold the ends at T =0°. These boundary conditions are expressed as
TO,t)=0, T(L,t)=0 6.6.3)
Let the initial temperature distribution be represented by
T(x,0) = f(x) (6.6.4)
We assume that the variables separate; that is,
T(x,t) = 6()X(x) (6.6.5)
Substitution of Eq. 6.6.5 into 6.6.2 yields
0'X = kX" (6.6.6)
where 0’ = d6/dt and X” = d>X/dx?. This is rearranged as
I% = };” 6.6.7)

Since the left side is a function of t only and the right side is a function of x only, we set
Eq. 6.6.7 equal to a constant A (lambda). This gives

0'—2k6 =0 (6.6.8)
and
X"-2X=0 (6.6.9)
The solution of Eq. 6.6.8 is of the form
O(t) = cre™* (6.6.10)
Equation 6.6.9 yields the solution
X(x) = czeﬁx + c3e‘ﬁ" (6.6.11)

Again, we must decide whether

A>0, A =0, A <0 (6.6.12)
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For A > 0, Eq. 6.6.10 shows that the solution has a nearly infinite temperature at large
t due to exponential growth; of course, this is not physically possible. For A = 0, the
solution would be independent of time. Again our physical intuition tells us this is not
expected. Therefore, we are left with A < 0. If we can satisfy the boundary conditions,
then we have found a solution. Let

B2 =-2 (6.6.13)
so that
B?>0 (6.6.14)
The solutions, Eqs. 6.6.10 and 6.6.11, may then be written as
o(t) = Ae~P*t (6.6.15)
and
X(x) = Bsin Sx + Ccos Bx (6.6.16)
where A, B, and C are arbitrary constants to be determined. Therefore, our solution is
T(x, t) = Ae P [Bsin fx + Ccos Bx] (6.6.17)
The first condition of Eq. 6.6.3 implies that
C=0 (6.6.18)
Therefore, our solution reduces to
T(x,t) = De #*® sin Bx (6.6.19)
where D = A - B. The second boundary condition of Eq. 6.6.3 requires that
sinBL=0 (6.6.20)
This is satisfied if
BL=nrx, or B=nx/L, n=1,23,.. (6.6.21)

The constant f3 is the eigenvalue, and the function sinnmx/L is the eigenfunction. The
solution is now

T(x, t) = ZTn(x,t) - ZD,,e‘W”WU sin 2 (6.6.22)
n=1 n=1

The initial condition, (6.6.4), may be satisfied at t = 0 if
T(x,0) = f(x) :ZDn sin 7% (6.6.23)

that is, if f(x) can be expanded in a Fourier sine series. If such is the case, the coefficients
will be given by (refer to Eqs. 6.4.42-6.4.44)

nr
L

5L
D, = fJ. f(x)sin Yy (6.6.24)
LJ,

and the separation-of-variables technique is successful.
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It should be noted again that all solutions of partial differential equations cannot be
found by separation of variables; in fact, it is only a very special set of boundary condi-
tions that allows us to separate the variables. For example, Eq. 6.6.20 would obviously
not be useful in satisfying the boundary condition T(L, f) = 20t. Separation of variables
would then be futile. Numerical methods could be used to find a solution, or other ana-
lytical techniques not covered in this book would be necessary.

Example 6.8

A long copper rod with insulated lateral surfaces has its left end maintained at a
temperature of 0°C and its right end, at x = 2 m, maintained at 100°C. Determine the
temperature as a function of x and ¢ if the initial condition is given by

100x O<x<l1

T(X’O)_f(x)_{loo 1<x<2

The thermal diffusivity for copper is k=1.14 x 10~* m?s.

Solution
We again assume the variables separate as

T(x, t) = 6(H) X (x)
with the resulting equation,
U
ke X

In this problem the eigenvalue A = 0 will play an important role. The solution for
A=0is

o(t) =Cq, X(x) = Ajx + By
resulting in
T(x, t) = Cl(Alx + B])

To satisfy the two end conditions T(0, t) = 0 and T(2, t) = 100, it is necessary to require
B;=0and A;C; =50. Then

T(x,t) = 50x 1)

This solution is, of course, independent of time, but we will find it quite useful.
Now, we return to the case that allows for exponential decay of temperature,
namely A = - B2. For this eigenvalue see Eq. 6.6.17 the solution is

T(x,t) = Ae™P**[Bsin Bx + Ccos Bx] )

We can superimpose the above two solutions, since Eq. 6.6.2 is linear, and obtain the
more general solution

T(x, t) = 50x + Ae™P*[Bsin Bx + C cos fx]
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Now let us satisfy the boundary conditions. The left-end condition T(0, t) = 0 de-
mands that C = 0. The right-end condition demands that

100 = 100 + A - Be #** sin BL
This requires that sin BL = 0, which occurs whenever
BL=nr or B =nn/L, n=1,2,3,--

The general solution is then

T(x,t) = 50x + ZDHE’”Z”Z’“/4 sinnizx
n=1

using L = 2. Note that this satisfies the describing equation (6.6.2) and the two bound-
ary conditions. Finally, it must satisfy the initial condition

nrx

f(x)=50x + ZD,, sinT
n=1

We see that if the function [ f(x) — 50x] can be expanded in a Fourier sine series, then
the solution will be complete. The Fourier coefficients are

1L,
D,= EJ‘ [£(x) - 50x]sin 22X dx
L), L

! 2
=3 00x—50sin "+ EJ. (100 - 50x)sin "=~ dx
2Jo 2 2J, >
2

—Cos——+——sin
nmw 2 nemw 2

2x nmx 4 nxx]" 200 nwx
=50| - — | ———cos—

o nm 1

nm 2 n?g? 2
e
n2mr? 2

The solution is, using k = 1.14 x 10~ m%s for copper,

©

T(x,t) = 50x + ZLO'S sin 12 p-28110 "t gjp X
n? 2 2

n=1

Note that the time t is measured in seconds.

6.6.2 A Long, Totally Insulated Rod

The lateral sides of the long rod are again insulated so that heat transfer occurs only
in the x direction along the rod. The temperature in the rod is described by the one-
dimensional heat equation

2
or _, 0°T

—=k— 6.6.25
ot ox? ( )
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For this problem, we have an initial temperature distribution given by
T(x,0) = f(x) (6.6.26)

Since the rod is totally insulated, the heat flux across the end faces is zero. This condition
gives, with the use of Eq. 6.5.1,

T T
65—(0,t) =0, a—(L,t) =0 (6.6.27)
ox ox

We assume that the variables separate,
T(x,t) = O(t)X(x) (6.6.28)
Substitute into Eq. 6.6.25, to obtain

0! B X" 3

ko X

-B? (6.6.29)

where —f32is a negative real number. Equation 6.6.29 gives

0' =-B%k0 (6.6.30)

and
X"+ B2X =0 (6.6.31)

The equations have solutions in the form

0(t) = Ae PKt (6.6.32)

and
X(x) = Bsin Bx + Ccos Bx (6.6.33)

The first boundary condition of (6.6.27) implies that B = 0, and the second requires that

oX .
a—x(L) =-CBsinBL=0 (6.6.34)
This can be satisfied if we set
sinL=0 (6.6.35)
hence, the eigenvalues are
B :”T”, n=0,1,2, (6.6.36)

Thus, the independent solutions are of the form

T, (x,t) = a,e "7 K/L CosnLLx (6.6.37)
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where the constant a,, replaces AC. The general solution, which hopefully will satisfy the
remaining initial condition, is then
T(x, t) = Zane*wﬂzk/w cos% (6.6.38)
n=0
Note that we retain the =0 eigenvalue in the series.
The initial condition is given by Eq. 6.6.26. It demands that

0

Flx) = Zan cos ™ (6.6.39)
n=0
Using trigonometric identities we can show that

L 0 m#n
I cosnLLxcos mzrx dx=9L/2 m=n=+#0 (6.6.40)
0 L m=n=0

Multiply both sides of Eq. 6.6.39 by cos mmx/L and integrate from 0 to L. We then have*
10" 2" nwx
ap = 7,“ fx)dx, a, = fJ. f(x)cos——dx (6.6.41)
L), L, L

The solution is finally

T(x,t) = Zane‘(”z”zk/p)’ COS% (6.6.42)
n=0

Thus, the temperature distribution can be determined provided that f(x) can be
expanded in a Fourier cosine series.

Example 6.9

A long, laterally insulated stainless steel rod has heat generation occurring within the
rod at the constant rate of 4140 W/m?3.s. The right end is insulated and the left end is
maintained at 0°C. Find an expression for T(x, t) if the initial temperature distribution is

T(x,0) = f(x) = 100x O<x<l1
%0 =f® =100 _100r 1<x<2

for the 2-m-long, 0.1-m-diameter rod. Use the specific heat C = 460 J/kg-°C,
p=7820kg/m?3, and k=3.86 x 10° m?/s.

L
*Note that it is often the practice to define a4y as 4, = (2/L)J 0 f(x)dx and then to write the solution as

T(x, t)=ag/2+ Z:a,,e’”z”z"’“Z cos(nrx/L). This was done in Section 1.10. Both methods are, of course,
n=1
equivalent.
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Solution

To find the appropriate describing equation, we must account for the heat generated
in the infinitesimal element of Fig. 6.11. To Eq. 6.5.7 we would add a heat-generation
term,

o(x, y, z, t) Ax Ay Az At

where ¢(x, y, z, t) is the amount of heat generated per volume per unit time. The
one-dimensional heat equation would then take the form

2
o _,oT. ¢
at  ox? pC

For the present example the describing equation is
oT 0°T 4140
== = k -
ot ox? 7890 - 460

This nonhomogeneous, partial differential equation is solved by finding a particular
solution and adding it to the solution of the homogeneous equation

or . o’T
L S
ot 0Ox?
The solution of the homogeneous equation is (see Egs. 6.6.32 and 6.6.33)
T(x, t) = Ae#*¥ [Bsin Bx + C cos fx]

The left-end boundary condition is T(0, f) = 0, resulting in C = 0. The insulated right
end requires that 0T/0x (L, t) = 0. This results in

cosBL =0

Thus, the quantity L must equal /2, 3w/2, 57/2, ---. This is accomplished by using

_ 2n-1r

, n=1,2,3,--
2L

B

The homogeneous solution is, then, using k=3.86 x 107 and L =2,

n=1

To find the particular solution, we note that the generation of heat is independent
of time. Since the homogeneous solution decays to zero with time, we anticipate that
the heat-generation term will lead to a steady-state temperature distribution. Thus,
we assume the particular solution to be independent of time, that is,

Ty(x, 1) = g(x)
Substitute this into the describing equation, to obtain

0=386x10"°g"+1.15x1073
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The solution to this ordinary differential equation is
g(x) = —149x2 + c1x + ¢y

This solution must also satisfy the boundary condition at the left end, yielding ¢, =0
and the boundary condition at the right end (g’ = 0), giving c¢; = 596. The complete
solution, which must now satisfy the initial condition, is

T(x,t) = —-149x2 + 596x + Z:Dne’2'38“0’”2’1’1)2'f sin(izn‘; L nxJ
n=1

To find the unknown coefficients D,, we use the initial condition, which states that

F(x) = —149x2 + 596x + ZD,, sin(2n4_ L ﬂxj
n=1

The coefficients are then

2(° 2n-1
D, :Ej [f(x)+149x27596x]sin( n nxjdx
0

1
:J. (149x2—496x)sin[2n n'xjdx
0

2
+I (149x2 — 696 + ZOO)sin[zn n'xjdx
1

The integrals can be integrated by parts providing a complete solution.

6.6.3 Two-Dimensional Heat Conduction in a Long, Rectangular Bar

Along, rectangular bar is bounded by the planes x =0, x =4, y =0, and, y = b. These faces
are kept at T = 0°C, as shown by the cross section in Fig. 6.14. The bar is heated so that

X

FIGURE 6.14 Cross section of a rectangular bar.
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the variation in the z direction may be neglected. Thus, the variation of temperature in

the bar is described by
T T 82T
a =k 672 + 672 (6.6.43)
ot ox= 0Oy
The initial temperature distribution in the bar is given by
T(x,y,0) = f(x,y) (6.6.44)

We want to find an expression for T(x, y, t). Hence, we assume that

T(x,y,t) = X(x)Y(y)0(t) (6.6.45)
After Eq. 6.6.45 is substituted into Eq. 6.6.43, we find that

XY0' =k(X"YO + XY"0) (6.6.46)
Equation 6.6.46 may be rewritten as

X" 9! Y”
=—-— .6.47
X k8 Y (6.647)

Since the left-hand side of Eq. 6.6.47 is a function of x only and the right side is a function
of t and y, we may assume that both sides equal the constant value —A. (With experience
we now anticipate the minus sign.) Therefore, we have

X"+1X =0 (6.6.48)
and

Y” 97

r_o. 6.4

Y " %o (6.6.49)

We use the same argument on Eq. 6.6.49 and set it equal to a constant —u. That is,

% - % +A=—p (6.6.50)
This yields the two differential equations
Y'+uY =0 (6.6.51)
and
0'+(A+ ko =0 (6.6.52)
The boundary conditions on X(x) are
X0)=0, X(@@=0 (6.6.53)

since the temperature is zero at x = 0 and x = 4. Consequently, the solution of Eq. 6.6.48,

X(x) = Asin JAx + BeosvAx (6.6.54)
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reduces to
X(x) = Asin”%x (6.6.55)
where we have used
n?n?
A= P n=1,2,3,-- (6.6.56)

Similarly, the solution to Eq. 6.6.51 reduces to

Y(y) = Csin mZ Y (6.6.57)
where we have employed
2.2
w="0m, m=123- (6.658)

With the use of Egs. 6.6.56 and 6.6.58 we find the solution of Eq. 6.6.52 to be
G(t) — De—zrzk(nz/nzwrﬁ/bz)t (6659)
Equations 6.6.55, 6.6.57 and 6.6.59 may be combined to give

X in Y. (6.6.60)

Tmn(x/]//t) — Amne—mk(m/gzwﬂ/bz)t sin .
a

where the constant a,,, replaces ACD. The most general solution is then obtained by
superposition, namely,

LCHTOED I I i (6.6.61)
m=1n=1
and we have

T(x,y,t) = ZZa,,me*”z“”z/ﬂz*’Wﬁ sin @sin? (6.6.62)

m=1 n=1 a

This is a solution if coefficients a,,, can be determined so that
T(x/yro) = f(x/y) = Z Zumn Sin@ sin m;:y (6663)

a
m=1| n=1

We make the grouping indicated by the brackets in Eq. 6.6.63. Thus, for a given x in the
range (0, a), we have a Fourier series in y. [For a given x, f(x, y) is a function of y only.]
Therefore, the term in the brackets is the constant b,, in the Fourier sine series. Hence,

0

b
Zumn sin X — gj f(x,y)sin mry dy
a bJ, b

n=1

=F,(x) (6.6.64)
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The right-hand side of Eq. 6.6.64 is a series of functions of x, one foreachm=1,2,3, ---.
Thus, Eq. 6.6.64 is a Fourier sine series for F, (x). Therefore, we have

2 (" ,
An = 7JA Fy (x)sulmdx (6.6.65)
at, a

Substitution of Eq. 6.6.64 into Eq. 6.6.65 yields
4 (! mm nwx
Ay :—I j f(x,y)sin—ysin—dydx (6.6.66)
abJoJo b a

The solution of our problem is Eq. 6.6.62 with a,,,, given by Eq. 6.6.66.

This problem is an example of an extension of the ideas that we have developed, to
include three independent variables; the two-dimensional Fourier series representation
was also utilized.

We have studied the major ideas used in the application of separation of variables to
problems in rectangular coordinates; to find the solution it was, in general, necessary to
expand the initial condition in a Fourier series. For other problems that are more conve-
niently formulated in cylindrical coordinates, we would find Bessel functions taking the
place of Fourier series, and using spherical coordinates, Legendre polynomials would
appear. Sections 6.7 and 6.8 will present the solutions to Laplace’s equation in spherical
coordinates and cylindrical coordinates, respectively.

Example 6.10

The edges of a thin plate are held at the temperatures shown in the sketch of Fig. 6.15.
Determine the steady-state temperature distribution in the plate. Assume the large
plate surfaces to be insulated.

0°C

0°C 50 sin ry°C

0°C

i
|

I 2
FIGURE 6.15

Solution
The describing equation is the heat equation

+7
ox?  oy?  oz?

oT 02T 0°T  0°T
E:k =
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For the steady-state situation there is no variation of temperature with time; that is,

0T/ot = 0. For a thin plate with insulated surfaces we have 82T/0z2 = 0. Thus,
0T T
o2 =0
Ox? 6.y 2

This is Laplace’s equation. Let us assume that the variables separate; that is,

T(x,y) = X(x)Y(y)
Then substitute into the describing equation to obtain

XII _ _ﬂ _ Bz
X Y
where we have chosen the separation constant to be positive to allow for a sinusoidal
variation* with y. The ordinary differential equations that result are
X"-B2X =0
YY"+ B2Y =0

The solutions are
X(x) = AeP* 4+ Be =P~
Y(y) = Csin By + Dcos By
The solution for T(x, y) is then
T(x,y) = (AeP* + Be=P¥)(Csin By + D cos By)
Using T(0, y) =0, T(x, 0) =0, and T(x, 1) =0 gives

0=A+B
0=D
0=sinp

The final boundary condition is
T(2,y) = 50sinzy = (Ae?# + Be2F)Csin By
From this condition we have
B=n
50 = C(Ae?P + Be2P)
From the equations above we can solve for the constants. We have

B = —A, AC = % = 0.0934
27 _ p2m
Finally, the expression for T(x, y) is
T(x,y) =0.0934(e™ — e 7")sinny

Note that the expression above for the temperature is independent of the material
properties; it is a steady-state solution.

*If the right-hand edge were held at a constant temperature we would also choose the separation constant
so that cos By and sin By appear. This would allow a Fourier series to satisfy the edge condition.

285
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6.7 ELECTRIC POTENTIAL ABOUT
A SPHERICAL SURFACE

Consider that a spherical surface is maintained at an electrical potential V. The potential
depends only on ¢ and is given by the function f(¢). The equation that describes the po-
tential in the region on either side of the spherical surface is Laplace’s equation (6.5.15),
written in spherical coordinates (shown in Fig. 6.12) as

BV, 1 af oV
ar(r 6rj+sin¢6¢(sm¢6¢j 0 67.1)

Obviously, one boundary condition requires that
V(r, ¢) = f(9) (6.7.2)

The fact that a potential exists on the spherical surface of finite radius should not lead to
a potential at infinite distances from the sphere; hence, we set

V(wo,¢)=0 (6.7.3)

We follow the usual procedure of separating variables; that is, assume that

V(r, ¢) = R(r)D(¢) (6.7.4)
This leads to the equations
1d( ,dR 1 d .
P rnl Rl — (P = 7.
R dr(r er Dsing dg ) = H (67.5)

which can be written as, letting cos ¢ = x, so that ® = ®(x),
r?R"+2rR' = uR =0
(6.7.6)
1-x2)D" —2x® + ud =0

The first of these is recognized as Cauchy’s equation (see Section 1.11) and has the solution

R(r) = cqr V24 o p=1/2-url/4 6.7.7)
This is put in better form by letting -1 + /u + 1 = n. Then

R(r) = oy +—2 (6.7.8)

rn+1

The equation for ® becomes Legendre’s equation (see Section 2.3),
(1-x2)®" —2x®' + n(n+1)® =0 (6.7.9)

where 1 must be a positive integer for a proper solution to exist. The general solution to
this equation is

O(x) = c3P, (x) + c4Q, (%) (6.7.10)
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Since Q,(x) = o as x — 1 (see Eq. 2.3.19), we set ¢, = 0. This results in the following
solution for V(7, x):

V(r,x) = Z Vau(r,x) = Z [Anrnpn (%) + Bnri(’Hl)Pn (X)] (6711)
n=0 n=0

Let us first consider points inside the spherical surface. The constants B, = 0 if a
finite potential is to exist at 7 = 0. We are left with

V(r,x) =Y Ar"P,(x) (6.7.12)
n=0
This equation must satisfy the boundary condition

V2= f) = 3 APy (@) 6713)
n=0

The unknown coefficients A, are found by using the property

1 0 m#n
.[ Pu(x)Py(x)dx =1 2 (6.7.14)

1 — m=n
2n+1

Multiply both sides of Eq. 6.7.12 by P,,(x)dx and integrate from —1 to 1. This gives

_2n+1

I f(x)Py(x)dx (6.7.15)

For a prescribed f(¢), using cos ¢ =x, Eq. 6.7.12 provides us with the solution for interior
points with the constants A, given by Eq. 6.7.15.

For exterior points we require that A, =0 in Eq. 6.7.11, so the solution is bounded as
x — oo. This leaves the solution

V(r,x) =Y B,r" P, (x) (6.7.16)
n=0

This equation must also satisfy the boundary condition

f(x) = i Bt " VP, (x) (6.7.17)
n=0

Using the property (6.7.14), the B,s are given by

B, - 2”” e I FEOPy(x)dx (6.7.18)

1
If f(x) is a constant we must evaluate .[-1 P, (x)dx. Using Eq. 2.3.15 we can show that
[ flpo(x)dx -2, jflpn(x)dx -0, n=123 (6.7.19)

An example will illustrate the application of this presentation for a specific f(x).
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Example 6.11

Find the electric potential inside a spherical surface of radius 7 if the hemispherical
surface when 7> ¢ > 7/2 is maintained at a constant potential V; and the hemispher-
ical surface when 7/2 > ¢ > 0 is maintained at zero potential.

Solution
Inside the sphere of radius r, the solution is

V(r,x) = iA,,r”P,,(x)
n=0

where x = cos ¢. The coefficients A, are given by Eq. 6.7.15,

2n+1

I F)P,(x) dx

2n+1 !
= = J. VoP,(x) dx +J. 0-P,(x)dx
215 -1 0

_2n+1
i

0
VOJ- P,(x)dx
-1

where we have used V =V, for 1> ¢ > n/2 and V =0 for 7/2 > ¢ > 0. Several A,’s can
be evaluated, to give (see Eq. 2.3.15)
Vo 3V,

AO:—’ Alzfi, AZZO, A3=ﬂ, A4 0 A5—*11VO
2 4ry 1618 321

This provides us with the solution, letting cos ¢ = x,

V(T‘, ¢) = A()PO + Aer1 + A21’2P2 +

3 5
=Vy F = Ziocosd) + 176(rj P;(cos ¢) —;;(;] Ps(cos¢) + 1

where the Legendre polynomials are given by Egs. 2.3.15. Note that the expression
above could be used to give a reasonable approximation to the temperature in a solid
sphere if the hemispheres are maintained at T;) and zero degrees, respectively, since
Laplace’s equation also describes the temperature distribution in a solid body.

6.8 HEAT TRANSFER IN A CYLINDRICAL BODY

Boundary-value problems involving a boundary condition applied to a circular
cylindrical surface are encountered quite often in physical situations. The solution
of such problems invariably involve Bessel functions, which were introduced in
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Section 2.5. We shall use the problem of finding the steady-state temperature distribu-

tion in the cylinder shown in Fig. 6.16 as an example. Other exercises are included in
the Problems.

T=£(r)

¥ T=0 7

FIGURE 6.16 Circular cylinder with boundary conditions.

The partial differential equation describing the phenomenon illustrated in Fig. 6.16 is

aor

—=kv?T 6.8.1
ot (6.8.1)
where we have assumed constant material properties. For a steady-state situation using

cylindrical coordinates (see Eq. 6.5.14), this becomes
8T 10T  8°T

+-—+— =0 8.2

orr ror oz? (6.82)

where, considering the boundary conditions shown in the figure, we have assumed the
temperature to be independent of 6. We assume a separated solution of the form

T(r,z) = R(r)Z(2) (6.8.3)
which leads to the equations
1 1 z"
—|R'+=R'|=-"=-p? 6.8.4
R[ r j z " (684)

where a negative sign is chosen on the separation constant since we anticipate an expo-
nential variation with z. We are thus confronted with solving the two ordinary differen-
tial equations

R+ %R’ +u?R =0 (6.8.5)

Z"—p2Z =0 (6.8.6)
The solution to Eq. 6.8.6 is simply
Z(z) = c1eM* + cpeH (6.8.7)
for u>0; for u=0, it is
Z(z) = c5z + cq (6.8.8)
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This solution may or may not be of use. We note that Eq. 6.8.5 is close to being Bessel’s
equation (2.5.1) with A = 0. By substituting x = ur, Eq. 6.8.5 becomes

x?R"+ xR +x?R =0 (6.8.9)
which is Bessel’s equation with A = 0. It possesses the general solution
R(x) = c3]0(x) + c4Yp(x) (6.8.10)

where Jy(x) and Y(x) are Bessel functions of the first and second kind, respectively. We
know (see Fig. 2.5) that Y(x) is singular at x = 0. (This corresponds to 7 = 0.) Hence, we
require that ¢y = 0, and the solution to our problem is

T(r, z) = Jo(ur)[Ae#* + Be™+#] (6.8.11)

The temperature on the surface at z = 0 is maintained at zero degrees. This gives B =-A
from the equation above. The temperature at r = r; is also maintained at zero degrees;
that is,

T(ry,z) = 0= AJo(uro)le** —e™#] (6.8.12)

The Bessel function Jy(ury) has infinitely many roots that allow the equation above to be
satisfied; none of these roots equal zero; thus the u = 0 eigenvalue is not of use. Let the
nth root be designated u,,. Four such roots are shown in Fig. 2.4 and are given numeri-
cally in the Appendix.

Returning to Eq. 6.8.11, our solution is now

T(r,2) = S T(r, 2 = 3 Jo(uur) Ay len® - o] (68.13)

n=1 n=1

This solution should allow the final end condition to be satisfied. It is

T(,L) = f() = 3 Aot — et (6.8.14)

n=1

We must now use the property that

b 0 n+m
x] ()] (i X) dx = p2 (6.8.15)
J.O e e ? ]2+1(.unb) n=m

where the p, are the roots of the equation /(o) = 0. This permits the coefficients A,, to
be determined from, using j =0,

2(eﬂnl~ — e*HnL)’l J. "o

T 2 ) rf(1)]o(u,r)dr (6.8.16)

0

This completes the solution. For a specified f(r) for the temperature on the right end,
Eq. 6.8.13 gives the temperature at any interior point if the coefficients are evaluated
using Eq. 6.8.16. This process will be illustrated with an example.
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Example 6.12

Determine the steady-state temperature distribution in a 2-unit-long, 4-unit-diameter
circular cylinder with one end maintained at 0°C, the other end at 1007 °C, and the
lateral surface insulated.

Solution
Following the solution procedure outlined in the previous section, the solution is

T(r, 2) = Jo(ur)[Ae® + Be <]
The temperature at the base where z =0 is zero. Thus, B=-A and
T(r, z) = Ao(ur)let= +e7#]

On the lateral surface where r =2, the heat transfer is zero, requiring that

or

5(2/ Z) =0= A]E) (2#)[5#2 —eHz]

or
Jo(2u) =0

There are infinitely many values of u that provide this condition, the first of which
is u = 0. Let the nth one be p,, the eigenvalue. The solution corresponding to this
eigenvalue is

Tu(r,2) = AuJo(par)et® — =]
for u, > 0; for u; =0, the solution is, using Eq. 6.8.8,
Tl (V, Z) = AlZ

The general solution is then found by superimposing all the individual solutions,
resulting in

T(r,z) = 3" Ty(r,2) = A1z + Y ApJo(par)let® — e ]
n=1 n=2

The remaining boundary condition is that the end at z = 2 is maintained at 1007 °C,
that is,

T(r,2) = 100r = 2A; + Y. A,Jo(uyr)e2r —e 2]
n=2

We must be careful, however, and not assume that the A, in this series are given by
Eq. 6.8.16; they are not, since the roots u, are not to the equation Jy(ury) = 0, but to
J'o(urg) = 0. The property analogous to Eq. 6.8.15 takes the form

0 n#m

Ty
I x]j(/"nx)]j(,umx)dx = ,U%Voz - ]'2
0 2u?

) m=m
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whenever , are the roots of [’/(irg) = 0. The coefficients A, are then given by, using
j=0,
z(eZ#n — o 2Hn )71

! 7‘02]5(/1,1?’0)

.[ 0 T’f(l’)]()([,lni’) dr

0

where f(r) = 100r. For the first root, t; = 0, the coefficient is
2 "
Al = 7.[ Kf(r) dr
o Jo

Some of the coefficients are, using t; =0, u, =1.916, u; = 3.508

2
A = 2 r(100r)dr = 400
22 ),

2(e3832 _ p-3832)-1 2

A, =
2 22x04032 |},

r(1007)] (1.9167)dr

2 3.832
= 6.68J‘ r2Jo(1.9167)dr = 0.951I x2] o (x)dx
0 0
2(e7016 _ ¢=7.016)-1 2

Ay=——+———= | r(100r 3.5087)dr
5= rioaor | 14000 (3:508)

7.016

2
= 0.501I 72]0(3.5087)dr = 0.0117-[ X2 (x)dx
0 0

The integrals above could be easily evaluated by use of a computer integration
scheme. Such a scheme will be presented in Chapter 8. The solution is then

T(r,z) = %z + AyJ(1.9167)[e10167 — 19162 ]

+ A3]0 (3.508r)[e3-5082 _ 8_3'5082 ] T

6.9 GRAVITATIONAL POTENTIAL

There are a number of physical situations that are modeled by Laplace’s equation. We
shall choose the force of attraction of particles to demonstrate its derivation. The law of
gravitation states that a lumped mass m located at the point (X, Y, Z) attracts a unit mass
located at the point (x, y, z) (see Fig. 6.17), with a force directed along the line connecting
the two points with magnitude given by

_km

F=-——

(6.9.1)
r
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where K is a positive constant and the negative sign indicates that the force acts toward
the mass m. The distance between the two points is provided by the expression

r=Jx=X)2+(y-Y)? +(z-2)? (6.9.2)

positive being from Q to P.

P(x, y, z)

m
QX Y, 2)

FIGURE 6.17 Gravitational attraction.

A gravitational potential ¢ can be defined as

_ fm

¢ (6.9.3)

B
This allows the force F acting on a unit mass at P due to a mass at Q to be related to ¢
by the equation

)
or
_ _km

= (6.9.4)

Now, let the mass m be fixed in space and let the unit mass move to various locations
P(x, y, z). The potential function ¢ is then a function of x, y, and z. If we let P move along
a direction parallel to the x axis, then

o _oper
ox  or ox
- = Xx = XP + (- YP + (z - 21

kmx—-X
T2

r r
=Fcosa = F, (6.9.5)

where o is the angle between r and the x axis, and F, is the projection of F in the x
direction. Similarly, for the other two directions,

P g0

’

-y = (6.9.6)
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The discussion above is now extended to include a distributed mass throughout a vol-
ume V. The potential d¢ due to an incremental mass dm is written, following Eq. 6.9.3, as

kpdV
dg = % (6.9.7)

where p is the density, i.e., mass per unit volume. Letting dV = dx dy dz, we have

p dx dy dz
[(x - X)2 + Y)? +(z - Z)2]/2 (6.9.8)
This is differentiated to give the force components. For example, F, is given by
0¢ x-X p
F,= = = —kJ.J.J.fr—zdx dydz (6.9.9)
4

This represents the x component of the total force exerted on a unit mass located outside
the volume V at P(x, y, z) due to the distributed mass in the volume V.
If we now differentiate Eq. 6.9.9 again with respect to x, we find that

az¢ 7,1”‘.[ 1 =X edyde (6.9.10)

We can also show that

2 M 3 _YZ*
;—(g:—kj““‘ %_7@1’5 ) pdxdydz
82(/) J.j-[ r133(zr_5Z)2}pdxdde

The sum of the bracketed terms inside the three integrals above is observed to be iden-
tically zero, using Eq. 6.9.2. Hence, Laplace’s equation results,

(6.9.11)

0% 0% 0%

or, in our shorthand notation,
V2 =0 (6.9.13)

Laplace’s equation is also satisfied by a magnetic potential function and an electric
potential function at points not occupied by magnetic poles or electric charges. We have
already observed in Section 6.5 that the steady-state heat-conduction problem leads to
Laplace’s equation. Finally, the flow of an incompressible fluid with negligible viscous
effects also leads to Laplace’s equation.

We have now derived several partial differential equations that describe a variety of
physical phenomena. This modeling process is quite difficult to perform on a situation
that is new and different. Hopefully, the confidence gained in deriving the equations of
this chapter and in finding solutions will allow the reader to derive and solve other par-
tial differential equations arising in the multitude of application areas.
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PROBLEMS

6.1 Classify each of the following equations.
%u  0*u  0%u
ox?  oxoy  oy?

(a) =0

2 2
ou +(1+x)Q:O
0Ox Oy oy?

0%u ou) o%u | ou
—+ 1+ = +k— =G(x,
ox? (8x] )

o’ oy
2
@ [Z—Zj - u(x, )

du
o u(x)

6.2 Verify each of the following statements.

0%u
b)) 1- x)ax—2 +2y

(c)

(e)

(@) u(x, y) =e*siny is a solution of Laplace’s
equation, V2u =0.

(b) T(x, t)=e™ sin x is a solution of the para-
bolic heat equation, 6T/dt = ko>T/ox>2.

(c) u(x, t) =sin wx sin wat is a solution of the
wave equation, 0%u/ot? = a?0%u/ox?.

6.3 In arriving at the equation describing the

motion of a vibrating string, the weight

was assumed to be negligible. Include the

weight of the string in the derivation and

determine the describing equation. Classify

the equation.

6.4 Derive the describing equation for a
stretched string subject to gravity loading
and viscous drag. Viscous drag per unit
length of string may be expressed by c(ou/ot);
the drag force is proportional to the velocity.
Classify the resulting equation.

6.5 Derive the torsional vibration equation for
a circular shaft by applying the basic law
which states that Ioc = X T, where o is the
angular acceleration, T is the torque
(T = GJ6/L, where 0is the angle of twist of the
shaft of length L and ] and G are constants),
and I is the mass moment of inertia
(I =k*m, where the radius of gyration

k = /J/A and m is the mass of the shaft).
Choose an infinitesimal element of the shaft
of length Ax, sum the torques acting on it,

and, using p as the mass density, show that
the wave equation results,

0 _co

o2 pox?

6.6 An unloaded beam will undergo vibrations

when subjected to an initial disturbance.
Derive the appropriate partial differential
equation which describes the motion

using Newton’s second law applied to an
infinitesimal section of the beam. Assume the
inertial force to be a distributed load acting
on the beam. A uniformly distributed load w
is related to the vertical deflection y(x, t) of
the beam by w = -EI 8*y/ox* where E and I
are constants.

6.7 For the special situation in which LG = RC,

show that the transmission-line equation
6.2.36 reduces to the wave equation

ot? Ox?
if we let

i(x, t) = e"u(x, t)

where a2=1/LC and b? = RG.

6.8 A tightly stretched string, with its ends fixed

at the points (0, 0) and (2L, 0), hangs at rest
under its own weight. The y axis points
vertically upward. Find the describing
equation for the position u(x) of the string. Is
the following expression a solution?

_ 8 , 8C
u(x) = 27 (x-=1L) o2
where a2 = P/m. If so, show that the depth
of the vertex of the parabola (i.e., the lowest
point) varies directly with m (mass per unit
length) and L?, and inversely with P, the
tension.

6.9 Avery long string is given an initial

displacement ¢ (x) and an initial velocity 6(x).
Determine the general form of the solution
for u(x, t). Compare with the solution (6.3.18)
and that of Example 6.1.
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6.10 An infinite string with a mass of 0.03 kg/m
is stretched with a force of 300 N. It is
subjected to an initial displacement of cos x
for —-m/2 < x < m/2 and zero for all other x and
released from rest. Determine the subsequent
displacement of the string and sketch the
solution for t =0.1 s and 0.01 s.

6.11 Express the solution (6.4.36) in terms of the
solution (6.3.10). What are f and g?

6.12 Determine the general solution for the
wave equation using separation of variables
assuming that the separation constant is
zero. Show that this solution cannot satisfy
the boundary and/or initial conditions.

6.13 Verify that

t .
u(x, t)=b, cosﬂ sin nrx
L L
is a solution to Eq. 6.4.1, and the conditions

6.4.2 through 6.4.4.

6.14 Find the constants A, B, C, and D in
Egs. 6.4.23 and 6.4.24 in terms of the
constants cy, ¢, ¢3, and ¢4 in Egs. 6.4.20
and 6.4.21.

6.15 Determine the relationship of the
fundamental frequency of a vibrating string
to the mass per unit length, the length of the
string, and the tension in the string.

6.16 If, for a vibrating wire, the original
displacement of the 2-m-long stationary wire
is given by a) 0.1 sin x7/2, b) 0.1 sin 37/2,
and c) 0.1(sin 7x/2 - sin 3mx/2), find the
displacement function u(x, t). Both ends are
fixed, P =50 N, and the mass per unit length
is 0.01 kg/m. With what frequency does
the wire oscillate? Write the eigenvalue and
eigenfunction for part (a).

6.17 The initial displacement in a 2-m-long string
is given by 0.2 sin mx and released from rest.
Calculate the maximum velocity in the string
and state its location.

6.18 A string 7 m long is stretched until the wave
speed is 40 m/s. It is given an initial velocity
of 4 sin x from its equilibrium position.
Determine the maximum displacement and
state its location and when it occurs.

6.19 A string 4 m long is stretched, resulting
in a wave speed of 60 m/s. It is given an
initial displacement of 0.2 sin mx/4 and
an initial velocity of 20 sin 7x/4. Find the
solution representing the displacement of
the string.

6.20 A 4-m-long stretched string with 2 =20 m/s
is fixed at each end.

(@) The string is started off by an initial
displacement u(x, 0) = 0.2 sin mx/4. The
initial velocity is zero. Determine the
solution for u(x, f).

(b) Suppose that we wish to generate
the same string vibration as in part (a)
(a standing half-sine wave with the
same amplitude), but we want to start
with a zero-displacement, non-zero-
velocity condition. That is,

u(x, 0) =0, ou/ot(x, 0) = g(x). What
should g(x) be?

(c) For u(x, 0) =0.1 sin mx/4 and du/ot(x, 0) =
10 sin mx/4, what are the arbitrary con-
stants? What is the maximum displace-
ment value u,,,(x, t), and where does it
occur?

6.21 Suppose that a tight string is subjected to the
following conditions: u(0, t) =0, u(L, t) =0,
ou/ot(x, 0) =0, u(x, 0) = k. Calculate the first
three nonzero terms of the solution u(x, f).

6.22 A string 7 m long is started into motion
by giving the middle one-half an initial
velocity of 20 m/s. The string is stretched
until the wave speed is 60 m/s. Determine
the resulting displacement of the string as a
function of x and ¢.

6.23 The right end of a 6-m-long wire, which is
stretched until the wave speed is 60 m/s, is
continually moved with the displacement
0.5 cos 4nt. What is the maximum amplitude
of the resulting displacement?

6.24 The wind is blowing over some suspension
cables on a bridge, causing a force that is
approximated by the function 0.02 sin 217t.
Is resonance possible if the force in the cable
is 40,000 N, the cable has a mass of 10 kg/m,
and it is 15 m long?



6.25 A circular shaft 7 m long is fixed at both

ends. The middle of the shaft is twisted
through an angle o, the remainder of the
shaft through an angle proportional to the
distance from the nearest end, and then the
shaft is released from rest. Determine the
subsequent motion expressed as 6(x, f).
Problem 6.5 gives the appropriate wave
equation.

6.26 Modify Eq. 6.5.9 to account for internal heat

generation within the rod. The rate of heat
generation is denoted ¢ (W/m?3 - s).

6.27 Allow the sides of a long, slender circular

rod to transfer heat by convection. The
convective rate of heat loss is given by

Q =hA(T - Ty), where h (W/m? - s - °C) is

the convection coefficient, A is the surface
area, and T;is the temperature of the
surrounding fluid. Derive the describing
partial differential equation. (Hint: Apply an
energy balance to an elemental slice of the
rod.)

6.28 The tip of a 2-m-long slender rod with

6.29

6.30

6.31

6.32

lateral surface insulated is dipped into a hot
liquid at 200°C. What differential equation
would describe the temperature? After a
long time, what would be the temperature
distribution in the rod if the other end is
held at 0°C? The lateral surfaces of the rod
are insulated.

The conductivity K in the derivation of

Eq. 6.3.10 was assumed constant. Let K be a
function of x and let C and p be constants.
Write the appropriate describing equation.

Write the one-dimensional heat equation that
would be used to determine the temperature
in a) a flat circular disk with the flat surfaces
insulated, and b) in a sphere with initial
temperature a function of r only.

Determine the steady-state temperature

distribution in a) a flat circular disc with
sides held at 100°C with the flat surfaces
insulated, and b) a sphere with the outer
surface held at 100°C.

The initial temperature in a 10-m-long iron
rod is 300 sin mx/10, with both ends being

6.33

6.34

6.35
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held at zero temperature. Determine the
times necessary for the midpoint of the rod
to reach 200, 100, and 50, respectively. The
material constant k = 1.7 x 10° m%/s. The
lateral surfaces are insulated.

A 1-m-long, 50-mm-diameter aluminum rod,
with lateral surfaces insulated, is initially at

a temperature of 200(1 + sin mx). Calculate
the rate at which the rod is transferring heat
at the left end initially and after 600 s if both
ends are maintained at 200°C. For aluminum,
K =200 W/m-°C and k=8.6 x 10°m%s.
(Hint: Let 6(x, t) = T(x, t) — 200.)

The initial temperature distribution in a
2-m-long brass bar is given by

50x O<x<l1
flx) =
100 -50x 1<x<2

Both ends are maintained at zero temperature.
Determine the solution for T(x, t). How long
would you predict it would take for the center
of the rod to reach a temperature of 10°C?

The material constant k =2.9 x 10° m%/s. The
lateral surfaces are insulated.

The initial temperature distribution in a
2-m-long steel rod is given by

50x
100 — 50x

O<x<l1
l<x<?2

f)= {
The rod is completely insulated. Determine
the temperature distribution in the rod and
predict the temperature that the rod will
eventually attain. k = 3.9 x 10 m?/s.

6.36 A 2-m-long aluminum bar, with lateral

surfaces insulated, is given the initial
temperature distribution f(x) = 50 x2. The left
end of the bar is maintained at 0°C and the
right end at 200°C. Determine the subsequent
temperature distribution in the bar.
k=86x%x10°mZs.

6.37 The infinite slab of Fig. 6.17 is initially at

temperature f(x). The face at x = 0 is held at
T = 0°C. Determine the temperature T(x, t) of
the slab for ¢ > 0.
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6.38 The aluminum slab in Problem 6.37 is given
the initial temperature distribution

f(x):{:)OO O<x<m/2

Estimate the rate of heat transfer per square
meter from the left face at t = 104 s if
k=8.6 x10°m?%s and K=200 W/m-°C.

n/2<x<m

6.39 Heat generation occurs within a 4-m-long
copper rod at the variable rate of
2000(4x — x2) W/m3 - s. Both ends are
maintained at 0°C. C=380]/kg - °C,
p=8940kg/m3, and k=114 x 10 m?%s.

(a) Find the steady-state solution for the
temperature distribution in the rod.

(b) Find the transient temperature distribu-
tion in the rod if the initial temperature
was constant at 100°C. Just set up the
integral for the Fourier coefficients; do
not integrate.

6.40 Find the steady-state temperature
distribution in a 1-m? slab if three sides are
maintained at 0°C and the remaining side
(at y =1 m) is held at 100 sin mx °C. All other
surfaces are insulated.

6.41 Three edges of a thin 1-m by 2-m plate are
held at 0°C, while the fourth edge, at y=1m,
is held at 100°C. All other surfaces are
insulated. Determine an expression for the
temperature distribution in the plate.

6.42 Find the steady-state temperature
distribution in a 2 m-square slab if three sides

are maintained at 100°C and the remaining
side (at x =2 m) is held at 200°C. The two flat
surfaces are insulated.

6.43 The temperature of a spherical surface 0.2 m
in diameter is maintained at a temperature of
250°C. This surface is interior to a very large
mass. Find an expression for the temperature
distribution inside and outside the surface.

6.44 The temperature on the surface of a
1-m-diameter sphere is 100 cos ¢ °C. What
is the temperature distribution inside the
sphere?

6.45 Find the potential field between two
concentric spheres if the potential of the
outer sphere is maintained at V = 100 and the
potential of the inner sphere is maintained at
zero. The radii are 2 m and 1 m, respectively.

6.46 A right circular cylinder is 1 m long and 2 m
in diameter. Its left end and lateral surface
are maintained at a temperature of 0°C and
its right end at 100°C. Find an expression
for its temperature at any interior point.
Calculate the first three coefficients in the
series expansion.

6.47 Determine the solution for the temperature
as a function of r and f in a circular cylinder
of radius r, with insulated (or infinitely long)
ends if the initial temperature distribution
is a function f(r) of r only and the lateral
surface is maintained at 0°C. See Eq. 6.5.14.

6.48 An aluminum circular cylinder 50 mm in
diameter with ends insulated is initially at
100°C. Approximate the temperature at the
center of the cylinder after 2 s if the lateral
surface is kept at 0°C. For aluminum,
k=8.6x10"m?%s.

6.49 A circular cylinder 1 m in radius is
completely insulated and has an initial
temperature distribution 1007 °C. Find an
expression for the temperature as a function
of r and t. Write integral expressions for
at least three coefficients in the series
expansion.

6.50 Differentiate Eq. 6.9.8 and show that Eq. 6.9.9
results. Also verify Eq. 6.9.10.
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