
We have seen in Chapter 1 that nonhomogeneous differential equations with constant coeffi-
cients containing sinusoidal input functions (e.g., A sin ωt ) can be solved quite easily for any
input frequency ω . There are many examples, however, of periodic input functions that are not
sinusoidal. Figure 7.1 illustrates four common ones. The voltage input to a circuit or the force
on a spring–mass system may be periodic but possess discontinuities such as those illustrated.
The object of this chapter is to present a technique for solving such problems and others con-
nected to the solution of certain boundary-value problems in the theory of partial differential
equations.

The technique of this chapter employs series of the form

a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.1.1)

the so-called trigonometric series. Unlike power series, such series present many pitfalls and
subtleties. A complete theory of trigonometric series is beyond the scope of this text and most
works on applications of mathematics to the physical sciences. We make our task tractable by
narrowing our scope to those principles that bear directly on our interests.

Let f (t) be sectionally continuous in the interval −T < t < T so that in this interval f (t)
has at most a finite number of discontinuities. At each point of discontinuity the right- and left-
hand limits exist; that is, at the end points −T and T of the interval −T < t < T we define
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f (−T+) and f (T−) as limits from the right and left, respectively, according to the following
expressions:

f (−T+) = lim
t→−T
t>−T

f (t), f (T−) = lim
t→T
t<T

f (t) (7.1.2)

and insist that f (−T+) and f (T−) exist also. Then the following sets of Fourier coefficients of
f (t) in −T < t < T exist:

a0 = 1

T

∫ T

−T
f (t) dt

an = 1

T

∫ T

−T
f (t) cos

nπ t

T
dt

bn = 1

T

∫ T

−T
f (t) sin

nπ t

T
dt, n = 1, 2, 3, . . .

(7.1.3)

The trigonometric series 7.1.1, defined by using these coefficients, is the Fourier series expan-
sion of f (t) in −T < t < T . In this case we write

f (t) ∼ a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.1.4)

This representation means only that the coefficients in the series are the Fourier coefficients of
f (t) as computed in Eq. 7.1.3. We shall concern ourselves in the next section with the question
of when “~” may be replaced with “=”; conditions on f (t) which are sufficient to permit this
replacement are known as Fourier theorems.

We conclude this introduction with an example that illustrates one of the difficulties under
which we labor. In the next section we shall show that f (t) = t , −π < t < π has the Fourier
series representation

t = 2
∞∑

n=1

(−1)n+1

n
sin nt (7.1.5)

where the series converges for all t,−π < t < π . Now f ′(t) = 1. But if we differentiate the
series 7.1.5 term by term, we obtain

2
∞∑

n=1

(−1)n+1 cos nt (7.1.6)

which diverges in −π < t < π since the nth term, (−i)n+1 cos nt , does not tend to zero as n
tends to infinity. Moreover, it is not even the Fourier series representation of f ′(t) = 1. This is
in sharp contrast to the “nice” results we are accustomed to in working with power and
Frobenius series.

In this chapter we will use Maple commands from Appendix C, assume from Chapter 3, and
dsolve from Chapter 1. New commands include: sum and simplify/trig.

7.1.1 Maple Applications
It will be useful to compare a function to its Fourier series representation. Using Maple, we can
create graphs to help us compare. For example, in order to compare Eq. 7.1.5 with f (t) = t , we
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can start by defining a partial sum in Maple:

>fs:=(N, t) -> sum(2*(-1)^(n+1)* sin(n*t)/n, n=1..N);

fs := (N,t)→
N∑

n=1

(
2(−1)(n+1) sin(n t)

n

)
In this way, we can use whatever value of N we want and compare the Nth partial sum with the
function f (t):

>plot({fs(4, t), t}, t=-5..5);

Observe that the Fourier series does a reasonable job of approximating the function only on the
interval −π < t < π . We shall see why this is so in the next section.
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Problems

1. (a) What is the Fourier representation of f (t) = 1,
−π < t < π?

(b) Use Maple to create a graph of f (t) and a partial
Fourier series.

2. Verify the representation, Eq. 7.1.5, by using Eqs. 7.1.3
and 7.1.4.

3. Does the series (Eq. 7.1.5) converge if t is exterior to
−π < t < π? At t = π? At t = −π? To what values?

4. Show that the Fourier series representation given as
Eq. 7.1.4 may be written

f (t) ∼ 1

2T

∫ T

−T
f (t) dt

+ 1

T

∞∑
n=1

∫ T

−T
f (s) cos

nπ t

T
(s − t) dt

5. Explain how
π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

follows from Eq. 7.1.5. Hint: Pick t = π/2. Note that
this result also follows from

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ · · · , −1 < x ≤ 1

6. What is the Fourier series expansion of f (t) = −1,
−T < t < T ?

7. Create a graph of tan−1 x and a partial sum, based on the
equation in Problem 5.

8. One way to derive Eqs. 7.1.3 is to think in terms of a least
squares fit of data (see Section 5.4). In this situation, we
let g(t) be the Fourier series expansion of f (t), and we



strive to minimize:∫ T

−T
( f (t)− g(t))2 dt

(a) Explain why this integral can be thought of as a func-
tion of a0, a1, a2, etc., and b1, b2, etc.

(b) Replace g(t) in the above integral with a1 cos( π t
T ),

creating a function of just a1. To minimize this func-
tion, determine where its derivative is zero, solving
for a1. (Note that it is valid in this situation to switch
the integral with the partial derivative.)

(c) Use the approach in part (b) as a model to derive all
the equations in Eqs. 7.1.3.

9. Computer Laboratory Activity: In Section 5.3 in
Chapter 5, one problem asks for a proof that for any
vectors y and u (where u has norm 1), the projection of

the vector y in the direction of u can be computed by
(u · y)u. We can think of sectionally continuous func-
tions f (t) and g(t), in the interval −T < t < T , as
vectors, with an inner (dot) product defined by

〈 f, g〉 =
∫ T

−T
f (t)g(t) dt

and a norm defined by

|| f || =
√
〈 f, f 〉

(a) Divide the functions 1, cos
nπ t

T
, and sin

nπ t

T
by

appropriate constants so that their norms are 1.

(b) Derive Eqs. 7.1.3 by computing the projections of 

f (t) in the “directions” of 1, cos
nπ t

T
, and sin

nπ t

T
.

As we have remarked in the introduction, we shall assume throughout this chapter that f (t) is
sectionally continuous in −T < t < T . Whether f (t) is defined at the end points −T or T or
defined exterior1 to (−T, T ) is a matter of indifference. For if the Fourier series of f (t) con-
verges to f (t) in (−T, T ) it converges almost everywhere since it is periodic with period 2T.
Hence, unless f (t) is also periodic, the series will converge, not to f (t), but to its “periodic
extension.” Let us make this idea more precise. First, we make the following stipulation:

(1) If t0 is a point of discontinuity of f (t),−T < t0 < T , then redefine f (t0), if necessary, so
that

f (t0) = 1
2 [ f (t−0 )+ f (t+0 )] (7.2.1)

In other words, we shall assume that in (−T, T ) the function f (t) is always the average of the
right- and left-hand limits at t. Of course, if t is a point of continuity of f (t), then
f (t+) = f (t−) and hence Eq. 7.2.1 is also true at points of continuity. The periodic extension
f̃ (t) of f (t) is defined

(2) f̃ (t) = f (t), −T < t < T (7.2.2)

(3) f̃ (t + 2T ) = f̃ (t) for all t (7.2.3)

(4) f̃ (T ) = f̃ (−T ) = 1
2 [ f (−T+)+ f (T−)] (7.2.4)

Condition (2) requires f̃ (t) and f (t) to agree on the fundamental interval (−T, T ).
Condition (3) extends the definition of f (t) so that f̃ (t) is defined everywhere and is periodic
with period 2T. Condition (4) is somewhat more subtle. Essentially, it forces stipulation (1)
(see Eq. 7.2.1) on f̃ (t) at the points ±nT (see Examples 7.2.1 and 7.2.2).

7.2 A FOURIER THEOREM
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1The notation (−T, T ) means the set of t,−T < t < T . Thus, the exterior of (−T, T ) means those t, t ≥ T or
t ≤ −T . 



7.2 A FOURIER THEOREM � 417

EXAMPLE 7.2.1

Sketch the periodic extension of f (t) = t/π,−π < t < π .

� Solution

In this example, f (π−) = 1 and f (−π+) = −1, so that f̃ (π) = f̃ (−π) = 0. The graph of f̃ (t) follows.

Note that the effect of condition (4) (See Eq. 7.2.4) is to force f̃ (t) to have the average of its values at all
t; in particular, f̃ (nπ) = f̃ (−nπ) = 0 for all n.
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EXAMPLE 7.2.2

Sketch the periodic extension of f (t) = 0 for t < 0, f (t) = 1 for t > 0, if the fundamental interval is (−1, 1).

� Solution

There are two preliminary steps. First, we redefine f (t) at t = 0; to wit,

f (0) = 1 + 0

2
= 1

2

Second, since f (1) = 1 and f (−1) = 0, we set

f̃ (−1) = f̃ (1) = 1 + 0

2
= 1

2

The graph of f (t) is as shown.
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A Fourier theorem is a set of conditions sufficient to imply the convergence of the Fourier se-
ries f (t) to some function closely “related” to f (t). The following is one such theorem.

Theorem 7.1: Suppose that f (t) and f ′(t) are sectionally continuous in −T < t < T . Then
the Fourier series of f (t) converges to the periodic extension of f (t), that is, f̃ (t), for all t.

We offer no proof for this theorem.2 Note, however, that the Fourier series for the functions
given in Examples 7.2.1 and 7.2.2 converge to the functions portrayed in the respective figures
of those examples. Thus, Eq. 7.1.4 with an equal sign is a consequence of this theorem.

There is another observation relevant to Theorem 7.1; in the interval −T < t < T ,
f̃ (t) = f (t). Thus, the convergence of the Fourier series of f (t) is to f (t) in (−T, T ).
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Problems

The following sketches define a function in some interval
−T < t < T . Complete the sketch for the periodic extension
of this function and indicate the value of the function at points
of discontinuity.

1.

2.

3.

4.

5.

6.

7.

Sketch the periodic extensions of each function.

8. f (t) =
{−1, −π < t < 0

1, 0 < t < π

9. f (t) = t + 1, −π < t < π

10. f (t) =
{

t + π, −π < t < 0
−t + π, 0 < t < π

2 A proof is given in many textbooks on Fourier series.
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11. f (t) = | sin t |, −π < t < π

12. f (t) =
{

0, −2 < t < 0
sin π t/2, 0 < t < 2

13. f (t) = t2, −π < t < π

14. f (t) =



−1, −1 < t < − 1

2
0, − 1

2 < t < 1
2

1, 1
2 < t < 1

15. f (t) = |t |, −1 < t < 1

16. f (t) =
{

0, −π < t < 0
sin t, 0 < t < π

17. f (t) =
{−1, −1 < t < 0

1, 0 < t < 1

18. f (t) = cos t, −π < t < π

19. f (t) = sin 2t, −π < t < π

20. f (t) = tan t, −π
2 < t < π

2

21. f (t) = t, −1 < t < 1

22. Explain why f (t) = √|t | is continuous in −1 < t < 1
but f ′(t) is not sectionally continuous in this interval.

23. Explain why f (t) = |t |3/2 is continuous and f ′(t) is also
continuous in −1 < t < 1. Contrast this with Problem
22.

24. Is ln | tan t/2| sectionally continuous in 0 < t < π/4?
Explain.

25. Is

f (t) =
{

ln | tan t/2|, 0 < ε ≤ |t | < π/4
0, |t | < ε

sectionally continuous in 0 < t < π/4? Explain.

7.3.1 Kronecker’s Method
We shall be faced with integrations of the type∫

xk cos
nπx

L
dx (7.3.1)

for various small positive integer values of k. This type of integration is accomplished by re-
peated integration by parts. We wish to diminish the tedious details inherent in such computa-
tions. So consider the integration-by-parts formula∫

g(x) f (x) dx = g(x)
∫

f (x) dx −
∫ [

g′(x)
∫

f (x) dx

]
dx (7.3.2)

Let

F1(x) =
∫

f (x) dx

F2(x) =
∫

F1(x) dx

...

Fn(x) =
∫

Fn−1(x) dx

(7.3.3)

Then Eq. 7.3.2 is ∫
g(x) f (x) dx = g(x)F1(x)−

∫
g′(x)F1(x) dx (7.3.4)

7.3 THE COMPUTATION OF THE FOURIER COEFFICIENTS
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from which

∫
g(x) f (x) dx = g(x)F1(x)− g′(x)F2(x)+

∫
g′′(x)F2(x) dx (7.3.5)

follows by another integration by parts. This may be repeated indefinitely, leading to

∫
g(x) f (x) dx = g(x)F1(x)− g′(x)F2(x)+ g′′(x)F3(x) + · · · (7.3.6)

This is Kronecker’s method of integration.
Note that each term on the right-hand side of Eq.7.3.6 comes from the preceding term by dif-

ferentiation of the g function and an indefinite integration of the f function as well as an alterna-
tion of sign.
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EXAMPLE 7.3.1

Compute 
∫ π

−π
x cos nx dx.

� Solution

We integrate by parts (or use Kronecker’s method) as follows:

∫ π

−π

x cos nx dx = x

n
sin nx

∣∣π
−π

− 1

(
− 1

n2
cos nx

) ∣∣∣∣
π

−π

= 0 + 1

n2
(cos nπ − cos nπ) = 0

EXAMPLE 7.3.2

Compute 
∫ π

−π
x2 cos nx dx .

� Solution

For this example, we can integrate by parts twice (or use Kronecker’s method):

∫ π

−π

x2 cosnx dx =
[

x2

n
sin nx − 2x

(
− 1

n2
cos nx

)
+ 2

(
− 1

n3
sin nx

)]π
−π

= 2

n2
(π cos nπ + π cos nπ) = 4π

n2
(−1)n
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Use Kronecker’s method and integrate 
∫

ex cos ax dx .

� Solution

Let g(x) = ex . Then∫
ex cos ax dx = ex 1

a
sin ax − ex

(
− 1

a2
cos ax

)
+ ex

(−1

a3
sin ax

)
+ · · ·

= ex

(
1

a
sin ax + 1

a2
cos ax − 1

a3
sin ax + · · ·

)

= ex sin ax

(
1

a
− 1

a3
+ · · ·

)
+ ex cos ax

(
1

a2
− 1

a4
+ · · ·

)

= ex 1

a

1

1 + 1/a2
sin ax + ex 1

a2

1

1 + 1/a2
cos ax

= ex

a2 + 1
(a sin ax + cos ax)

EXAMPLE 7.3.3

Problems

Find a general formula for each integral as a function of the
positive integer n.

1.
∫

xn cos ax dx

2.
∫

xn sin ax dx

3.
∫

xnebx dx

4.
∫

xn sinh bx dx

5.
∫

xn cosh bx dx

6.
∫

xn(ax + b)α dx

Find each integral using as a model the work in Example
7.3.3.

7.
∫

ebx cos ax dx

8.
∫

ebx sin ax dx

7.3.2 Some Expansions
In this section we will find some Fourier series expansions of several of the more common func-
tions, applying the theory of the previous sections.

Write the Fourier series representation of the periodic function f (t) if in one period

f (t) = t, −π < t < π

EXAMPLE 7.3.4

f (t)

�� � t
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� Solution

For this example, T = π . For an we have

a0 = 1

π

∫ π

−π

f (t) dt = 1

π

∫ π

−π

t dt = t2

2π

∣∣∣∣
π

−n

= 0

an = 1

π

∫ π

−π

f (t) cos nt dt, n = 1, 2, 3, . . .

= 1

π

∫ π

−π

t cos nt dt = 1

π

[
t

n
sin nt + 1

n2
cos nt

]π
−π

= 0

recognizing that cos nπ = cos(−nπ) and sin nπ = − sin(−nπ) = 0. For bn we have

bn = 1

π

∫ π

−π

f (t) sin nt dt, n = 1, 2, 3, . . .

= 1

π

∫ π

−π

t sin nt dt = 1

π

[
− t

n
cos nt + 1

n2
sin nt

]π
−π

= −2

n
cos nπ

The Fourier series representation has only sine terms. It is given by

f (t) = −2
∞∑

n=1

(−1)n

n
sin nt

where we have used cos nπ = (−1)n . Writing out several terms, we have

f (t) = −2[− sin t + 1
2 sin 2t − 1

3 sin 3t + · · ·]
= 2 sin t − sin 2t + 2

3 sin 3t − · · ·

Note the following sketches, showing the increasing accuracy with which the terms approximate the f (t).
Notice also the close approximation using three terms. Obviously, using a computer and keeping, say 50
terms, a remarkably good approximation can result using Fourier series.

2 sin t

f (t)

t

2 sin t � sin 2t

f (t)

t

f (t)

t

2 sin t � sin 2t � sin 3t2
3

EXAMPLE 7.3.4 (Continued)
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Find the Fourier series expansion for the periodic function f (t) if in one period

f (t) =
{

0, −π < t < 0
t, 0 < t < π

� Solution

The period is again 2π ; thus, T = π . The Fourier coefficients are given by

a0 = 1

π

∫ π

−π

f (t) dt = 1

π

∫ π

−0
t dt = π

2

an = 1

π

∫ π

−π

f (t) cos nt dt = 1

π

∫ 0

−π

0 cos nt dt

+ 1

π

∫ π

0
t cos nt dt

= 1

π

[
t

n
sin nt + 1

n2
cos nt

]π
0

= 1

πn2
(cos nπ − 1), n = 1, 2, 3, . . .

bn = 1

π

∫ π

−π

f (t) sin nt dt = 1

π

∫ 0

−π

0 sin nt dt + 1

π

∫ π

0
t sin nt dt

= 1

π

[
− t

n
cos nt + 1

n2
sin nt

]π
0

= −1

n
cos nπ, n = 1, 2, 3, . . .

The Fourier series representation is, then, using cos nπ = (−1)n ,

f (t) = π

4
+

∞∑
n=1

[
(−1)n − 1

πn2
cos nt − (−1)n

n
sin nt

]

= π

4
− 2

π
cos t − 2

9π
cos 3t + · · · + sin t

− 1

2
sin 2t + 1

3
sin 3t + · · ·

EXAMPLE 7.3.5

f (t)

t�� �
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Find the Fourier series for the periodic extension of

f (t) =
{

sin t, 0 ≤ t ≤ π

0, π ≤ t ≤ 2π

� Solution

The period is 2π and the Fourier coefficients are computed as usual except for the fact that a1 and b1 must be
computed separately—as we shall see. We have

a0 = 1

π

∫ π

0
sin t dt = 1

π
(− cos t)

∣∣∣∣
π

0

= 2

π

EXAMPLE 7.3.6

In the following graph, partial fourier series with n equal to 5, 10, and 20, respectively, have been plotted.

EXAMPLE 7.3.5 (Continued)
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t

n � 5

n � 10
n � 20
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For n 
= 1:

an = 1

π

∫ π

0
sin t cos nt dt

= 1

2π

∫ π

0
[sin(t + nt)+ sin(t − nt)] dt

= − 1

2π

[
cos(n + 1)t

n + 1
− cos(n − 1)t

n − 1

]π
0

= − 1

2π

[
(−1)n+1

n + 1
− (−1)n−1

n − 1

]
+ 1

2π

[
1

n + 1
− 1

n − 1

]

= 1

π(n2 − 1)
[(−1)n+1 − 1]

bn = 1

π

∫ π

0
sin t sin nt dt

= 1

2π

∫ π

0
[−cos(n + 1)t + cos(n − 1)t] dt

= 1

2π

[−sin(n + 1)t

n + 1
+ sin(n − 1)t

n − 1

]π
0

= 0

For n = 1 the expressions above are not defined; hence, the integration is performed specifically for n = 1:

a1 = 1

π

∫ π

0
sin t cos t dt

= 1

π

sin2 t

2

∣∣∣∣
π

0

= 0

b1 = 1

π

∫ π

0
sin t sin t dt = 1

π

∫ π

0

(
1

2
− 1

2
cos 2t

)
dt

= 1

π

(
1

2
t − 1

4
sin 2t

) ∣∣∣∣
π

0

= 1

2

Therefore, when all this information is incorporated in the Fourier series, we obtain the expansion

f̃ (t) = 1

π
+ 1

2
sin t + 1

π

∞∑
n=2

(−1)n+1

n2 − 1
cos nt

= 1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

The two series representations for f̃ (t) are equal because (−1)2k+1 − 1 = −2 and (−1)2k − 1 = 0. This se-
ries converges everywhere to the periodic function sketched in the example. For t = π/2, we have

sin
π

2
= 1

π
+ 1

2
sin

π

2
− 2

π

∞∑
n=1

(−1)n

4n2 − 1

EXAMPLE 7.3.6 (Continued)



7.3.3 Maple Applications
Clearly the key step in determining Fourier series representation is successful integration to
compute the Fourier coefficients. For integrals with closed-form solutions, Maple can do these
calculations, without n specified, although it helps to specify that n is an integer. For instance,
computing the integrals from Example 7.3.6, n 
= 1, can be done as follows:

>assume(n, integer);

>a_n:=(1/Pi)*(int(sin(t)*cos(n*t), t=0..Pi));

a—n := − (−1)n∼ + 1

π(1+ n∼)(−1+ n∼)
>b_n:=(1/Pi)*(int(sin(t)*sin(n*t), t=0..Pi));

b—n := 0

Some integrals cannot be computed exactly, and need to be approximated numerically. An ex-
ample would be to find the Fourier series of the periodic extension of f (t) = √

t + 5 defined on
−π ≤ t ≤ π . A typical Fourier coefficient would be

a3 = 1

π

∫ π

−π

√
t + 5 cos 3t dt

In response to a command to evaluate this integral, Maple returns complicated output that in-
volves special functions. In this case, a numerical result is preferred, and can be found via this
command:

>evalf((1/Pi)*(int(sqrt(t+5)*cos(3*t), t=-Pi..Pi)));

0.006524598965
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which leads to

π

4
= 1

2
−

∞∑
n=1

(−1)n

4n2 − 1
= 1

2
+ 1

3
− 1

15
+ 1

35
− 1

63
+ · · ·

The function f̃ (t) of this example is useful in the theory of diodes.

EXAMPLE 7.3.6 (Continued)

Problems

Write the Fourier series representation for each periodic func-
tion. One period is defined for each. Express the answer as a
series using the summation symbol.

1. f (t) =
{−t, −π < t < 0

t, 0 < t < π

2. f (t) = t2, −π < t < π



3. f (t) = cos t
2 , −π < t < π

4. f (t) = t + 2π, −2π < t < 2π

5.

6.

7.

8.

9. Problem 7 of Section 7.2

10. Problem 8 of Section 7.2

11. Problem 9 of Section 7.2

12. Problem 11 of Section 7.2

13. Problem 14 of Section 7.2

Use Maple to compute the Fourier coefficients. In addition,
create a graph of the function with a partial Fourier series for
large N.

14. Problem 1

15. Problem 2

16. Problem 3

17. Problem 4

18. Problem 5

19. Problem 6

20. Problem 7

21. Problem 8

22. Problem 9

23. Problem 10

24. Problem 11

25. Problem 12

26. Problem 13
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7.3.4 Even and Odd Functions
The Fourier series expansions of even and odd functions can be accomplished with significantly
less effort than needed for functions without either of these symmetries. Recall that an even
function is one that satisfies the condition

f (−t) = f (t) (7.3.7)

and hence exhibits a graph symmetric with respect to the vertical axis. An odd function satisfies

f (−t) = − f (t) (7.3.8)

The functions cos t , t2 − 1, tan2 t , k, |t | are even; the functions sin t , tan t , t , t |t | are odd.
Some even and odd functions are displayed in Fig. 7.2. It should be obvious from the definitions
that sums of even (odd) functions are even (odd). The product of two even or two odd functions
is even. However, the product of an even and an odd function is odd; for suppose that f (t) is
even and g(t) is odd and h = f g. Then

h(−t) = g(−t) f (−t) = −g(t) f (t) = −h(t) (7.3.9)

t

f(t)

Parabola

8

Straight line

t

f (t)

�1 1

Parabola1

t

f(t)

1

�1 1

2

f(t)

1�1 t

2 2�



The relationship of Eqs. 7.3.7 and 7.3.8 to the computations of the Fourier coefficients arises
from the next formulas. Again, f (t) is even and g(t) is odd. Then

∫ T

−T
f (t) dt = 2

∫ T

0
f (t) dt (7.3.10)

and ∫ T

−T
g(t) dt = 0 (7.3.11)

To prove Eq. 7.3.10, we have∫ T

−T
f (t) dt =

∫ 0

−T
f (t) dt +

∫ T

0
f (t) dt

= −
∫ 0

T
f (−s) ds +

∫ T

0
f (t) dt (7.3.12)

by the change of variables −s = t, −ds = dt . Hence,∫ T

−T
f (t) dt =

∫ T

0
f (−s) ds +

∫ T

0
f (t) dt

=
∫ T

0
f (s) ds +

∫ T

0
f (t) dt (7.3.13)

since f (t) is even. These last two integrals are the same because s and t are dummy variables.
Similarly, we prove Eq. 7.3.11 by∫ T

−T
g(t) dt =

∫ T

0
g(−s) ds +

∫ T

0
g(t) dt

= −
∫ T

0
g(s) ds +

∫ T

0
g(t) dt = 0 (7.3.14)

because g(−s) = −g(s).
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f(t)

t

f(t)

t

f(t)

t

f(t)

t

(a) Even (b) Odd

Figure 7.2 Some even and odd functions. 



We leave it to the reader to verify:

1. An even function is continuous at t = 0, redefining f (0) by Eq. 7.2.1, if necessary.
2. The value (average value, if necessary) at the origin of an odd function is zero.
3. The derivative of an even (odd) function is odd (even).

In view of the above, particularly Eqs. 7.3.10 and 7.3.11, it can be seen that if f (t) is an even
function, the Fourier cosine series results:

f (t) = a0

2
+

∞∑
n=1

an cos
nπ t

T
(7.3.15)

where

a0 = 2

T

∫ T

0
f (t) dt, an = 2

T

∫ T

0
f (t) cos

nπ t

T
dt (7.3.16)

If f (t) is an odd function, we have the Fourier sine series,

f (t) =
∞∑

n=1

bn sin
nπ t

T
(7.3.17)

where

bn = 2

T

∫ T

0
f (t) sin

nπ t

T
dt (7.3.18)

From the point of view of a physical system, the periodic input function sketched in Fig. 7.3
is neither even or odd. A function may be even or odd depending on where the vertical axis,
t = 0, is drawn. In Fig. 7.4 we can clearly see the impact of the placement of t = 0; it generates
an even function f1(t) in (a), an odd function f2(t) in (b), and f3(t) in (c) which is neither even
nor odd. The next example illustrates how this observation may be exploited.
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t

f1(t)

t

(a)

f2(t)

t

(b)

f3(t)

t

(c)

Figure 7.3 A periodic input.

Figure 7.4 An input expressed as various functions. 
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A periodic forcing function acts on a spring–mass system as shown. Find a sine-series representation by con-
sidering the function to be odd, and a cosine-series representation by considering the function to be even.

� Solution

If the t = 0 location is selected as shown, the resulting odd function can be written, for one period, as

f1(t) =
{−2 −2 < t < 0

2, 0 < t < 2

For an odd function we know that

an = 0

Hence, we are left with the task of finding bn . We have, using T = 2,

bn = 2

T

∫ T

0
fl(t) sin

nπ t

T
dt, n = 1, 2, 3, . . .

= 2

2

∫ 2

0
2 sin

nπ t

2
dt = − 4

nπ
cos

nπ t

2

∣∣∣∣
2

0

= − 4

nπ
(cos nπ − 1)

The Fourier sine series is, then, again substituting cos nπ = (−1)n ,

f1(t) =
∞∑

n=1

4[1 − (−1)n]

nπ
sin

nπ t

2

= 8

π
sin

π t

2
− 8

3π
sin

3π t

2
+ 8

5π
sin

5π t

2
− · · ·

If we select the t = 0 location as displayed, an even function results. Over one period it is

f2(t) =


−2, −2 < t < −1

2, −1 < t < 1
−2, 1 < t < 2 31�1�3

f2(t)

t

2 2

2

2

EXAMPLE 7.3.7

2

�2 2

�2

f1(t)

t



We can take a somewhat different view of the problem in the preceding example. The rela-
tionship between f1(t) and f2(t) is

f1(t + 1) = f2(t) (7.3.19)

Hence, the odd expansion in Example 7.3.7 is just a “shifted” version of the even expansion.
Indeed,

f1(t + 1) = f2(t) =
∞∑

n=1

4
[1 − (−1)n]

nπ
sin

nπ(t + 1)

2

=
∞∑

n=1

4
[1 − (−1)n]

nπ

(
sin

nπ

2
cos

nπ t

2
+ cos

nπ

2
sin

nπ t

2

)

= 8

π

∞∑
n=1

(−1)n−1

2n − 1
cos

2n − 1

2
π t (7.3.20)

which is an even expansion, equivalent to the earlier one.
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For an even function we know that

bn = 0

The coefficients an are found from

an = 2

T

∫ T

0
f2(t) cos

nπ t

T
dt; n = 1, 2, 3, . . .

= 2

2

[∫ 1

0
2 cos

nπ t

2
dt +

∫ 2

1
(−2) cos

nπ t

2
dt

]

= 4

nπ
sin

nπ t

2

∣∣∣∣
1

0

− 4

nπ
sin

nπ t

2

∣∣∣∣
2

1

= 8

nπ
sin

nπ

2

The result for n = 0 is found from

a0 = 2

T

∫ T

0
f2(t) dt

= 2

2

[∫ 1

0
2 dt +

∫ 2

1
(−2) dt

]
= 2 − 2 = 0

Finally, the Fourier cosine series is

f2(t) =
∞∑

n=1

8

nπ
sin

nπ

2
cos

nπ t

2

= 8

π
cos

π t

2
− 8

3π
cos

3π t

2
+ 8

5π
cos

5π t

2
+ · · ·

EXAMPLE 7.3.7 (Continued)
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Problems

1. In Problems 1 to 8 of Section 7.3.2, (a) which of the
functions are even, (b) which of the functions are odd,
(c) which of the functions could be made even by shifting
the vertical axis, and (d) which of the functions could be
made odd by shifting the vertical axis?

Expand each periodic function in a Fourier sine series
and a Fourier cosine series.

2. f (t) = 4t, 0 < t < π

3. f (t) =
{

10, 0 < t < π

0, π < t < 2π

4. f (t) = sin t, 0 < t < π

5.

6.

7.

8. Show that the periodic extension of an even function
must be continuous at t = 0.

9. Show that the period extension of an odd function is zero
at t = 0.

10. Use the definition of derivative to explain why the deriv-
ative of an odd (even) function is even (odd).

Use Maple to compute the Fourier coefficients. In addition,
create a graph of the function with a partial Fourier series for
large N.

11. Problem 2

12. Problem 3

13. Problem 4

14. Problem 5

15. Problem 6

16. Problem 7

7.3.5 Half-Range Expansions
In modeling some physical phenomena it is necessary that we consider the values of a function
only in the interval 0 to T. This is especially true when considering partial differential equations,
as we shall do in Chapter 8. There is no condition of periodicity on the function, since there is no
interest in the function outside the interval 0 to T. Consequently, we can extend the function ar-
bitrarily to include the interval −T to 0. Consider the function f (t) shown in Fig. 7.5. If we ex-
tend it as in part (b), an even function results; an extension as in part (c) results in an odd func-
tion. Since these functions are defined differently in (−T, 0) we denote them with different
subscripts: fe for an even extension, fo for an odd extension. Note that the Fourier series for
fe(t) contains only cosine terms and contains only sine terms for fo(t). Both series converge to
f (t) in 0 < t < T . Such series expansions are known as half-range expansions. An example
will illustrate such expansions.

2

4

f(t)

t

Parabola

10

2

f(t)

t

100

21

f(t)

t
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f (t)

t tT

fe(t)

T�T t

fo(t)

T�T

(a) f (t) (b) Even function (c) Odd function

Figure 7.5 Extension of a function. 

A function f (t) is defined only over the range 0 < t < 4 as

f (t) =
{

t, 0 < t < 2
4 − t, 2 < t < 4

Find the half-range cosine and sine expansions of f (t).

� Solution

A half-range cosine expansion is found by forming a symmetric extension f (t). The bn of the Fourier series is
zero. The coefficients an are

an = 2

T

∫ T

0
f (t) cos

nπ t

T
dt, n = 1, 2, 3, · · ·

= 2

4

∫ 2

0
t cos

nπ t

4
dt + 2

4

∫ 4

2
(4 − t) cos

nπ t

4
dt

= 1

2

[
4t

nπ
sin

nπ t

4
+ 16

π2n2
cos

nπ t

4

]2

0

+ 1

2

[
16

nπ
sin

nπ t

4

]4

2

− 1

2

[
4t

nπ
sin

nπ t

4
+ 16

n2π2
cos

nπ t

4

]4

2

= − 8

n2π2

[
1 + cos nπ − 2 cos

nπ

2

]

For n = 0 the coefficient a0 is

a0 = 1
2

∫ 2

0
t dt + 1

2

∫ 4

2
(4 − t) dt = 2

EXAMPLE 7.3.8

2 4
t

f (t)
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The half-range cosine expansion is then

f (t) = 1 +
∞∑

n=1

8

n2π2

(
2 cos

nπ

2
− cos nπ − 1

)
cos

nπ t

4

= 1 − 8

π2

[
cos

π t

2
+ 1

9
cos

3π t

2
+ · · ·

]
, 0 < t < 4

It is an even periodic extension that graphs as follows:

Note that the Fourier series converges for all t, but not to f (t) outside of 0 < t < 4 since f (t) is not defined
there. The convergence is to the periodic extension of the even extension of f (t), namely, f̃e(t).

For the half-range sine expansion of f (t), all an are zero. The coefficients bn are

bn = 2

T

∫ T

0
f (t) sin

nπ t

T
dt, n = 1, 2, 3, . . .

= 2

4

∫ 2

0
t sin

nπ t

4
dt + 2

4

∫ 4

2
(4 − t) sin

nπ t

4
dt = 8

n2π2
sin

nπ

2

The half-range sine expansion is then

f (t) =
∞∑

n=1

8

n2π2
sin

nπ

2
sin

nπ t

4

= 8

π2

[
sin

π t

4
− 1

9
sin

3π t

4
+ 1

25
sin

5π t

4
− · · ·

]
, 0 < t < 4

This odd periodic extension appears as follows:

Here also we denote the periodic, odd extension of f (t) by f̃o(t). The sine series converges to f̃o(t) every-
where and to f (t) in 0 < t < 4. Both series would provide us with good approximations to f (t) in the inter-
val 0 < t < 4 if a sufficient number of terms are retained in each series. One would expect the accuracy of the
sine series to be better than that of the cosine series for a given number of terms, since fewer discontinuities
of the derivative exist in the odd extension. This is generally the case; if we make the extension smooth,
greater accuracy results for a particular number of terms.

fo(t)

t

~

�4 4 8

t

fe(t)
~

�4�2 4 8

EXAMPLE 7.3.8 (Continued)
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Problems

1. Rework Example 7.3.8 for a more general function. Let
the two zero points of f (t) be at t = 0 and t = T . Let the
maximum of f (t) at t = T/2 be K.

2. Find a half-range cosine expansion and a half-range sine
expansion for the function f (t) = t − t2 for 0 < t < 1.
Which expansion would be the more accurate for an
equal number of terms? Write the first three terms in each
series.

3. Find half-range sine expansion of

f (t) =
{

t, 0 < t < 2
2, 2 < t < 4

Make a sketch of the first three terms in the series.

Use Maple to solve

4. Problem 2

5. Problem 3

7.3.6 Sums and Scale Changes
Let us assume that f (t) and g(t) are periodic functions with period 2T and that both functions
are suitably3 defined at points of discontinuity. Suppose that they are sectionally continuous in
−T < t < T . It can be verified that

f (t) ∼ a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.3.21)

and

g(t) ∼ α0

2
+

∞∑
n=1

(
αn cos

nπ t

T
+ βn sin

nπ t

T

)
(7.3.22)

imply

f (t)± g(t) ∼ a0 ± α0

2
+

∞∑
n=1

[
(an ± αn) cos

nπ t

T
+ (bn ± βn) sin

nπ t

T

]
(7.3.23)

and

c f (t) ∼ c
a0

2
+

∞∑
n=1

(
can cos

nπ t

T
+ cbn sin

nπ t

T

)
(7.3.24)

These results can often be combined by shifting the vertical axis—as illustrated in
Example 7.3.7—to effect an easier expansion.

3As before, the value of f (t) at a point of discontinuity is the average of the limits from the left and the right. 
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EXAMPLE 7.3.9

Find the Fourier expansion of the even periodic extension of f (t) = sin t, 0 < t < π , as sketched, using the
results of Example 7.3.6.

� Solution

Clearly, f1(t)+ f2(t) = f̃e(t) as displayed below, where, as usual, f̃e(t) represents the even extension of
f (t) = sin t, 0 < t < π . But

f1(t + π) = f2(t)

and, from Example 7.3.6,

f1(t) = 1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

Therefore,

f2(t) = f1(t + π) = 1

π
+ 1

2
sin(t + π)− 2

π

∞∑
n=1

cos 2n(t + π)

4n2 − 1

Since sin(t + π) = − sin t and cos [2n(t + π)] = cos 2nt , we have

f2(t) = 1

π
− 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

Finally, without a single integration, there results

f̃e(t) = f1(t)+ f2(t)

= 2

π
− 4

π

∞∑
n=1

cos 2nt

4n2 − 1

���2�
t

f1

2��

�� ��2�

fe
~

t2�

��
t

f2

2��2� �



It is also useful to derive the effects of a change of scale in t. For instance, if

f (t) ∼ a0

2
+

∞∑
n=1

(
an cos

nπ t

T
+ bn sin

nπ t

T

)
(7.3.25)

then the period of the series is 2T . Let

t = T

τ
t̂ (7.3.26)

Then

f̂ (t̂) = f

(
T

τ
t̂

)
∼ a0

2
+

∞∑
n=1

(
an cos

nπ t̂

τ
+ bn sin

nπ t̂

τ

)
(7.3.27)

is the series representing f̂ (t̂) with period 2τ . The changes τ = 1 and τ = π are most common
and lead to expansions with period 2 and 2π , respectively.
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Find the Fourier series expansion of the even periodic extension of

g(t) =
{

t, 0 ≤ t < 1
2 − t, 1 ≤ t < 2

� Solution

This periodic input resembles the input in Example 7.3.8. Here the period is 4; in Example 7.3.8 it is 8. This
suggests the scale change 2t̂ = t . So if

f (t) =
{

t, 0 ≤ t < 2
4 − t, 2 ≤ t < 4

f̂ (t̂ ) = f (2t̂ ) =
{

2t̂, 0 ≤ 2t̂ < 2
4 − 2t̂, 2 ≤ 2t̂ < 4

Note that g(t̂ ) = f̂ (t̂ )/2. So

g(t̂) =
{

t̂, 0 ≤ t̂ < 1
2 − t̂, 1 ≤ t̂ < 2

EXAMPLE 7.3.10

�2 �1 1 2 t

g
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But from g(t̂ ) = f̂ (t̂ )/2 we have (see Example 7.3.8)

g(t̂ ) = 1

2

[
1 − 8

π2

(
cosπ t̂ + 1

9
cos 3π t̂ + · · ·

)]

Replacing t̂ by t yields

g(t) = 1

2
− 4

π2

(
cosπ t + 1

9
cos 3π t + · · ·

)
, 0 ≤ t < 2

EXAMPLE 7.3.10 (Continued)

Problems

1. Let

f (t) =
{

0, −π < t < 0
f1(t), 0 < t < π

have the expansion

f (t) = a0

2
+

∞∑
n=1

an cos nt + bn sin nt

(a) Prove that

f (−t) =
{

f1(−t), −π < t < 0
0, 0 < t < π

and, by use of formulas for the Fourier coefficients, that

f (−t) = a0

2
+

∞∑
n=1

an cos nt − bn sin nt, π < t < π

(b) Verify that

fe(t) = a0 + 2
∞∑

n=1

an cos nt, −π < t < π

where fe(t) is the even extension of f1(t), 0 < t < π .

2. Use the results of Problem 1 and the expansion of

f (t) =
{

0, −π < t < 0
t, 0 < t < π

which is

π

4
+

∞∑
n=1

(−1)n − 1

πn2
cos nt − (−1)n

n
sin nt

to obtain the expansion of

f (t) = |t |, −π < t < π

3. Use the result in Problems 1 and 2 and the methods of
this section to find the Fourier expansion of

f (t) =
{

t + 1, −1 < t < 0
−t + 1, 0 < t < 1

�� �

�

t

�� �

�

t



4. The Fourier expansion of

f̂ (t) =
{−1, −π < t < 0

1, 0 < t < π

is

4

π

∞∑
n=1

sin(zn − 1)t

2n − 1

Use this result to obtain the following expansion:

f (t) =
{

0, −π < t < 0
1, 0 < t < π

by observing that f (t) = [1 + f̂ (t)]/2.

5. Use the information given in Problem 4 and find the
expansion of

f (t) =
{−1, −π < t < 0

0, 0 < t < π

6. If f (t) is constructed as in Problem 1, describe the func-
tion f (t)− f (−t).

7. Use Problems 2 and 6 to derive

t = 2
∞∑

n=1

(−1)n−1

n
sin nt, −π < t < π

We shall now consider an important application involving an external force acting on a spring-
mass system. The differential equation describing this motion is

M
d2 y

dt2
+ C

dy

dt
+ K y = F(t) (7.4.1)

If the input function F(t) is a sine or cosine function, the steady-state solution is a harmonic mo-
tion having the frequency of the input function. We will now see that if F(t) is periodic with fre-
quency ω but is not a sine or cosine function, then the steady-state solution to Eq. 7.4.1 will con-
tain the input frequency ω and multiples of this frequency contained in the terms of a Fourier
series expansion of F(t). If one of these higher frequencies is close to the natural frequency of
an underdamped system, then the particular term containing that frequency may play the domi-
nant role in the system response. This is somewhat surprising, since the input frequency may be
considerably lower than the natural frequency of the system; yet that input could lead to serious
problems if it is not purely sinusoidal. This will be illustrated with an example.
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Consider the force F(t) acting on the spring–mass system shown. Determine the steady-state response to this
forcing function.

� Solution

The coefficients in the Fourier series expansion of an odd forcing function F(t) are (see Example 7.3.7)

an = 0

bn = 2

1

∫ 1

0
100 sin

nπ t

1
dt = −200

nπ
cos nπ t

∣∣∣∣
1

0

= −200

nπ
(cos nπ − 1), n = 1, 2, . . .

EXAMPLE 7.4.1
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The Fourier series representation of F(t) is then

F(t) =
∞∑

n=1

200

nπ
(1 − cos nπ) sin nπ t = 400

π
sinπ t − 400

3π
sin 3π t + 80

π
sin 5π t − · · ·

The differential equation can then be written

10
d2y

dt2
+ 0.5

dy

dt
+ 1000y = 400

π
sinπ t − 400

3π
sin 3π t + 80

π
sin 5π t − · · ·

Because the differential equation is linear, we can first find the particular solution (yp)1 corresponding to the first
term on the right, then (yp)2 corresponding to the second term, and so on. Finally, the steady-state solution is

yp(t) = (yp)1 + (yp)2 + · · ·
Doing this for the three terms shown, using the methods developed earlier, we have

(yp)1 = 0.141 sin π t − 2.5 × 10−4 cos π t

(yp)2 = −0.376 sin 3π t + 1.56 × 10−3 cos 3π t

(yp)3 = −0.0174 sin 5π t − 9.35 × 10−5 cos 5π t

Actually, rather than solving the problem each time for each term, we could have found a (yp)n corresponding
to the term [−(200/nπ)(cos nπ − 1) sin nπ t] as a general function of n. Note the amplitude of the sine term
in (yp)2. It obviously dominates the solution, as displayed in a sketch of yp(t):

yp(t)

Input F(t)

t

Output y(t)

F(t)

1 2�1

�100

100

C � 0.5 kg/s

10 kg

K � 1000 N/m

F(t)

EXAMPLE 7.4.1 (Continued)



7.4.1 Maple Applications
There are parts of Example 7.4.1 that can be solved using Maple, while other steps are better
done in one’s head. For instance, by observing that F(t) is odd, we immediately conclude that
an = 0. To compute the other coefficients:

>b[n]:=2*int(100*sin(n*Pi*t), t=0 . .1);

bn := −200(cos(nπ)− 1)

nπ

This leads to the differential equation where the forcing term is an infinite sum of sines. We can
now use Maple to find a solution for any n. Using dsolve will lead to the general solution:

>deq:=10*diff(y(t), t$2)+0.5*diff(y(t),
t)+1000*y(t)=b[n]*sin(n*Pi*t);

deq := 10

(
d2

dt2
y(t)

)
+ 0.5

(
d

dt
y(t)

)
+ 1000y(t)= −200(cos(nπ)− 1)sin(nπt)

nπ

>dsolve(deq, y(t));

y(t)=e(−
t
40)sin

(√
159999t

40

)
—C2+ e(−

t
40)cos

(√
159999t

40

)
—C1

+ (−400000+ 4000n2π2)sin(nπt− nπ)+ 200nπ cos(nπt + nπ)

− 400000 sin(nπt + nπ)+ 4000n2π2 sin(nπt + nπ)

+ 800000 sin(nπt)− 400 cos(nπt)nπ + 200nπ cos(nπt− nπ)

− 8000n2π2 sin(nπt))/(4000000nπ − 79999n3π3 + 400n5π5)

The first two terms of this solution are the solution to the homogeneous equation, and this part
will decay quickly as t grows. So, as t increases, any solution is dominated by the particular so-
lution. To get the particular solution, set both constants equal to zero, which can be done with
this command:

>ypn:= op(3, op(2, %));

ypn :=((−400000+ 4000n2π2)sin(nπt− nπ)+ 200nπ cos(nπt + nπ)

− 400000 sin(nπt + nπ)+ 4000n2π2 sin(nπt + nπ)

+ 800000 sin(nπt)− 400 cos(nπ t)nπ + 200nπ cos(nπt− nπ)

− 8000n2π2 sin(nπt))/(4000000nπ − 79999n3π3 + 400n5π5)
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Yet (yp)2 has an annular frequency of 3π rad/s, whereas the frequency of the input function was π rad/s. This
happened because the natural frequency of the undamped system was 10 rad/s, very close to the frequency of
the second sine term in the Fourier series expansion. Hence, it is this overtone that resonates with the system,
and not the fundamental. Overtones may dominate the steady-state response for any underdamped system that
is forced with a periodic function having a frequency smaller than the natural frequency of the system.

EXAMPLE 7.4.1 (Continued)



This solution is a combination of sines and cosines, with the denominator being the constant:

4000000nπ − 79999n3π3 + 400n5π5

The following pair of commands can be used to examine the particular solution for fixed values
of n. The simplify command with the triq option combines the sines and cosines. When
n = 1, we get

>subs(n=1, ypn):

>simplify(%, trig);

−800(−2000 sin(πt)+ 20π2 sin(πt)+ cos(πt)π)

π(4000000− 79999π2 + 400π4)

Finally,

>evalf(%);

0.1412659590 sin(3.141592654 t)− 0.0002461989079 cos(3.141592654 t)

which reveals (yp)1 using floating-point arithmetic. Similar calculations can be done for other
values of n.
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Problems

Find the steady-state solution to Eq. 7.4.1 for each of the
following.

1. M = 2, C = 0, K = 8, F(t) = sin 4t

2. M = 2, C = 0, K = 2, F(t) = cos 2t

3. M = 1, C = 0, K = 16, F(t) = sin t + cos 2t

4. M = 1, C = 0, K = 25, F(t) = cos 2t + 1
10 sin 4t

5. M = 4, C = 0, K = 36, F(t) =
N∑

n=1
an cos nt

6. M = 4, C = 4, K = 36, F(t) = sin 2t

7. M = 1, C = 2, K = 4, F(t) = cos t

8. M = 1, C = 12, K = 16, F(t) =
N∑

n=1
bn sin nt

9. M = 2, C = 2, K = 8, F(t) = sin t + 1
10 cos 2t

10. M = 2, C = 16, K = 32,

F(t) =
{

t −π/2 < t < π/2
π − t π/2 < t < 3π/2

s

and F(t + 2π) = F(t)

11. What is the steady-state response of the mass to the
forcing function shown?

F(t)

t�1 1

50 N

3�3

C � 0.4 kg/s

M � 2 kg

K � 50 N/m

F(t)



12. Determine the steady-state current in the circuit shown.

22. Problem 9

23. Problem 10

24. Problem 11

25. Problem 12

26. Solve the differential equation in Example 3.8.4 using
the method described in this section. Use Maple to sketch
your solution, and compare your result to the solution
given in Example 3.8.4.

27. Solve Problem 12 with Laplace transforms. Use Maple to
sketch your solution, and compare your result to the
solution found in Problem 12.

7.5.1 Integration
Term-by-term integration of a Fourier series is a valuable method for generating new expan-
sions. This technique is valid under surprisingly weak conditions, due in part to the “smoothing”
effect of integration.

Theorem 7.2: Suppose that f (t) is sectionally continuous in −π < t < π and is periodic with
period 2π . Let f (t) have the expansion

f (t) ∼
∞∑

n=1

(an cos nt + bn sin nt) (7.5.1)

Then ∫ t

0
f (s) ds =

∞∑
n=1

bn

n
+

∞∑
n=1

(
−bn

n
cos nt + an

n
sin nt

)
(7.5.2)

Proof: Set

F(t) =
∫ t

0
f (s) ds (7.5.3)
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0.001 0.002 0.003s t

v(t)

120

13. Prove that (yp)n from Example 7.4.1 approaches 0 as
n → ∞.

Use Maple to solve

14. Problem 1

15. Problem 2

16. Problem 3

17. Problem 4

18. Problem 5

19. Problem 6

20. Problem 7

21. Problem 8

20 ohms

10�3 henry

10�5 faradv(t)



and verify F(t + 2π) = F(t) as follows:

F(t + 2π) =
∫ t+2π

0
f (s) ds

=
∫ t

0
f (s) ds +

∫ t+2π

t
f (s) ds (7.5.4)

But f (t) is periodic with period 2π , so that

∫ t+2π

t
f (s) ds =

∫ π

−π

f (s) ds = 0 (7.5.5)

since 1/π
∫ π

−π
f (s) ds = a0 , which is zero from Eq. 7.5.1. Therefore, Eq. 7.5.4 becomes

F(t + 2π) = F(t). The integral of a sectionally continuous function is continuous from
Eq. 7.5.3 and F ′(t) = f (t) from this same equation. Hence, F ′(t) is sectionally continuous. By
the Fourier theorem (Theorem 7.1) we have

F(t) = A0

2
+

∞∑
n=1

(An cos nt + Bn sin nt) (7.5.6)

valid for all t. Here

An = 1

π

∫ π

−π

F(t) cos nt dt, Bn = 1

π

∫ π

−π

F(t) sin nt dt (7.5.7)

The formulas 7.5.7 are amenable to an integration by parts. There results

An = 1

π

∫ π

−π

F(t) cos nt dt

= 1

π
F(t)

sin nt

n

∣∣∣∣
π

−π

− 1

π

∫ π

−π

f (t)
sin nt

n
dt

= −bn

n
, n = 1, 2, . . . (7.5.8)

Similarly,

Bn = 1

π

∫ π

−π

F(t) sin nt dt

= 1

π
F(t)

(
−cos nt

n

) ∣∣∣∣
π

−π

+ 1

π

∫ π

−π

f (t)
cos nt

n
dt

= an

n
, n = 1, 2, . . . (7.5.9)

because F(π) = F(−π + 2π) = F(−π) and cos ns = cos(−ns) so that the integrated term is
zero. When these values are substituted in Eq. 7.5.6, we obtain

F(t) = A0

2
+

∞∑
n=1

(
−bn

n
cos nt + an

n
sin nt

)
(7.5.10)

444 � CHAPTER 7  / FOURIER SERIES



Now set t = 0 to obtain an expression for A0:

F(0) =
∫ 0

0
f (t) dt = 0 = A0

2
−

∞∑
n=1

bn

n
(7.5.11)

so that

A0

2
=

∞∑
n=1

bn

n
(7.5.12)

Hence, Eq. 7.5.2 is established.
It is very important to note that Eq. 7.5.2 is just the term-by-term integration of relation 7.5.1;

one need not memorize Fourier coefficient formulas in Eq. 7.5.2.
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Find the Fourier series expansion of the even periodic extension of f (t) = t2, −π < t < π . Assume the ex-
pansion

t = 2
∞∑

n=1

(1)n−1

n
sin nt

� Solution

We obtain the result by integration:∫ t

0
s ds = 2

∞∑
n=1

(−1)n−1

n

∫ t

0
sin ns ds

= 2
∞∑

n=1

(−1)n−1

n2
(− cos ns)

∣∣∣∣
t

0

= 2
∞∑

n=1

(−1)n−1

n2
− 2

∞∑
n=1

(−1)n−1

n2
cos nt

Of course, 
∫ t

0 s ds = t2/2, so that

t2

2
= 2

∞∑
n=1

(−1)n−1

n2
− 2

∞∑
n=1

(−1)n−1

n2
cos nt

The sum 2�∞
n=1[(−1)n−1/n2] may be evaluated by recalling that it is a0/2 for the Fourier expansion of t2/2.

That is,

a0 = 1

π

∫ π

−π

s2

2
ds = 1

π

s3

6

∣∣∣∣
π

−π

= 1

6π
[π3 − (−π)3] = π2

3

EXAMPLE 7.5.1
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Hence,

a0

2
= 2

∞∑
n=1

(−1)n−1

n2
= π2

6

so

t2 = π2

3
− 4

∞∑
n=1

(−1)n−1

n2
cos nt

EXAMPLE 7.5.1 (Continued)

EXAMPLE 7.5.2

Find the Fourier expansion of the odd periodic extension of t3, −π < t < π .

� Solution

From the result of Example 7.5.1 we have

t2

2
− π2

6
=

∞∑
n=1

−2(−1)n−1

n2
cos nt

This is in the form for which Theorem 7.2 is applicable, so∫ t

0

(
s2

2
− π2

6

)
ds = t3

6
− π2t

6

= −2
∞∑

n=1

(−1)n−1

n3
sin nt

Therefore,

t3 = π2t − 12
∞∑

n=1

(−1)n−1

n3
sin nt

which is not yet a pure Fourier series because of the π2t term. We remedy this defect by using the Fourier ex-
pansion of t given in Example 7.5.1. We have

t3 = π22
∞∑

n=1

(−1)n−1

n
sin nt − 12

∞∑
n=1

(−1)n−1

n3
sin nt

=
∞∑

n=1

(
2π2

n
− 12

n3

)
(−1)n−1 sin nt



In summary, note these facts:

1. �∞
n=1bn/n converges and is the value A0/2; that is,

1

2π

∫ π

−π

F(s) ds =
∞∑

n=1

bn

n
(7.5.13)

2. The Fourier series representing f (t) need not converge to f (t), yet the Fourier series
representing F(t) converges to F(t) for all t.

3. If

f (t) ∼ a0

2
+

∞∑
n=1

(an cos nt + bn sin nt) (7.5.14)

we apply the integration to the function f (t)− a0/2 because

f (t)− a0

2
∼

∞∑
n=1

(an cos nt + bn sin nt) (7.5.15)
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Problems

Use the techniques of this section to obtain the Fourier expan-
sions of the integrals of the following functions.

1. Section 7.2, Problem 1

2. Section 7.2, Problem 3

3. Section 7.2, Problem 5

4. Section 7.2, Problem 6

5. Section 7.2, Problem 9

6. Section 7.2, Problem 13

7. Section 7.2, Problem 14

8. Example 7.3.5

9. Example 7.3.6

10. Section 7.3.2, Problem 4

11. Section 7.3.2, Problem 7

12. Show that we may derive

π2x − x3

12
=

∞∑
n=1

(−1)n+1 sin nx

n3

by integration of

π2 − 3x2

12
=

∞∑
n=1

(−1)n+1 cos nx

n2

7.5.2 Differentiation
Term-by-term differentiation of a Fourier series does not lead to the Fourier series of the differ-
entiated function even when that derivative has a Fourier series unless suitable restrictive hy-
potheses are placed on the given function and its derivatives. This is in marked contrast to term-
by-term integration and is illustrated quite convincingly by Eqs. 7.1.4 and 7.1.5. The following
theorem incorporates sufficient conditions to permit term-by-term differentiation.



Theorem 7.3: Suppose that in −π < t < π, f (t) is continuous, f ′(t) and f ′′(t) are
sectionally continuous, and f (−π) = f (π). Then

f (t) = a0

2
+

∞∑
n=1

an cos nt + bn sin nt (7.5.16)

implies that

f ′(t) = d

dt

(a0

2

)
+

∞∑
n=1

d

dt
(an cos nt + bn sin nt)

=
∞∑

n=1

nbn cos nt − nan sin nt (7.5.17)

Proof: We know that d f/dt has a convergent Fourier series by Theorem 7.1, in which theorem
we use f ′ for f and f ′′ for f ′. (This is the reason we require f ′′ to be sectionally continuous.)
We express the Fourier coefficients of f ′(t) by αn and βn so that

f ′(t) = α0

2
+

∞∑
n=1

αn cos nt + βn sin nt (7.5.18)

where, among other things,

α0 = 1

π

∫ π

−π

f ′(s) ds

= 1

π
[ f (π)− f (−π)] = 0 (7.5.19)

by hypothesis. By Theorem 7.2, we may integrate Eq. 7.5.18 term by term to obtain

∫ t

0
f ′(s) ds = f (t)− f (0)

=
∞∑

n=1

βn

n
+

∞∑
n=1

−βn

n
cos nt + αn

n
sin nt (7.5.20)

But Eq. 7.5.16 is the Fourier expansion of f (t) in −π < t < π . Therefore, comparing the co-
efficients in Eqs. 7.5.16 and 7.5.20, we find

an = −βn

n
, bn = αn

n
, n = 1, 2, . . . (7.5.21)

We obtain the conclusion (Eq. 7.5.17) by substitution of the coefficient relations (Eq. 7.5.21) into
Eq. 7.5.18.
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EXAMPLE 7.5.3

Find the Fourier series of the periodic extension of

g(t) =
{

0, −π < t < 0
cos t, 0 < t < π

� Solution

The structure of g(t) suggests examining the function

f (t) =
{

0, −π < t < 0
sin t, 0 < t < π

In Example 7.3.6 we have shown that

f̃ (t) = 1

π
+ 1

2
sin t − 2

π

∞∑
n=1

cos 2nt

4n2 − 1

Moreover, f (π) = f (−π) = 0 and f (t) is continuous. Also, all the derivatives of f (t) are sectionally con-
tinuous. Hence, we may apply Theorem 7.3 to obtain

g̃(t) = 1

2
cos t + 4

π

∞∑
n=1

n sin 2nt

4n2 − 1

where g̃(t) is the periodic extension of g(t). Note, incidentally, that

g̃(0) = g(0+)+ g(0−)
2

= 1

2

and this is precisely the value of the Fourier series at t = 0.

Problems

1. Let g(t) be the function defined in Example 7.5.3. Find
g′(t). To what extent does g′(t) resemble

f (t) =
{

sin t, 0 ≤ t < π

0, −π ≤ t < 0

Differentiate the Fourier series expansion for g(t) and explain
why it does not resemble the Fourier series for − f (t).

2. Show that in −π < t < π, t 
= 0,

d

dt
| sin t | =

{− cos t, −π < t < 0
cos t, 0 < t < π

Sketch d/dt | sin t | and find its Fourier series. Is Theorem
7.3 applicable?

3. What hypotheses are sufficient to guarantee k-fold term-
by-term differentiation of

f (t) = a0

2
+

∞∑
n=1

an cos nt + bn sin nt

g

�� � 2� 3�
t



7.5.3 Fourier Series from Power Series4

Consider the function ln(1 + z). We know that

ln(1 + z) = z − z2

2
+ z3

3
− · · · (7.5.22)

is valid for all z, |z| ≤ 1 except z = −1. On the unit circle |z| = 1 we may write z = eiθ and
hence,

ln(1 + eiθ ) = eiθ − 1
2 e2iθ + 1

3 e3iθ − · · · (7.5.23)

except for z = −1, which corresponds to θ = π . Now

eiθ = cos θ + i sin θ (7.5.24)

so that einθ = cos nθ + i sin nθ and

1 + eiθ = 1 + cos θ + i sin θ

= 2

(
cos2 θ

2
+ i sin

θ

2
cos

θ

2

)

= 2

(
cos

θ

2
+ i sin

θ

2

)
cos

θ

2
= 2eiθ/2 cos

θ

2
(7.5.25)

Now

ln u = ln |u| + i arg u (7.5.26)

so that

ln(1 + eiθ ) = ln

∣∣∣∣2 cos
θ

2

∣∣∣∣+ i
θ

2
(7.5.27)

which follows by taking logarithms of Eq. 7.5.25. Thus, from Eqs. 7.5.23, 7.5.24, and 7.5.27, we
have

ln

∣∣∣∣2 cos
θ

2

∣∣∣∣+ i
θ

2
= cos θ − 1

2
cos 2θ + · · ·

+ i

(
sin θ − 1

2
sin 2θ + · · ·

)
(7.5.28)

and therefore, changing θ to t,

ln

∣∣∣∣2 cos
t

2

∣∣∣∣ = cos t − 1

2
cos 2t + 1

3
cos 3t + · · · (7.5.29)
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topic we explore in Chapter 10.



t

2
= sin t − 1

2
sin 2t + 1

3
sin 3t + · · · (7.5.30)

Both expansions are convergent in −π < t < π to their respective functions. In this interval
|2 cos t/2| = 2 cos t/2 but ln(2 cos t/2) is not sectionally continuous. Recall that our Fourier
theorem is a sufficient condition for convergence. Equation 7.5.29 shows that it is certainly not
a necessary one.

An interesting variation on Eq. 7.5.29 arises from the substitution t = x − π . Then

ln

(
2 cos

x − π

2

)
= ln

(
2 sin

x

2

)

=
∞∑

n=1

(−1)n−1

n
cos n(x − π)

=
∞∑

n=1

(−1)n−1(−1)n

n
cos nx (7.5.31)

Therefore, replacing x with t,

− ln

(
2 sin

t

2

)
=

∞∑
n=1

1

n
cos nt (7.5.32)

which is valid5 in 0 < t < 2π . Adding the functions and their representations in Eqs. 7.5.29 and
7.5.32 yields

− ln tan
t

2
= 2

∞∑
n=1

1

2n − 1
cos(2n − 1)t (7.5.33)

Another example arises from consideration of

a

a − z
= 1

1 − z/a

= 1 + z

a
+ z2

a2
+ · · ·

= 1 + cos θ

a
+ cos 2θ

a2
+ · · · + i

(
sin θ

a
+ sin 2θ

a2
+ · · ·

)
(7.5.34)

But

a

a − eiθ
= a

a − cos θ − i sin θ

= a
(a − cos θ)+ i sin θ

(a − cos θ)2 + sin2 θ

= a
a − cos θ + i sin θ

a2 − 2a cos θ + 1
(7.5.35)
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5Since −π < t < π becomes −π < x − π < π , we have 0 < x < 2π .



Separating real and imaginary parts and using Eq. 7.5.34 results in the two expansions

a
a − cos t

a2 − 2a cos t + 1
=

∞∑
n=0

a−n cos nt (7.5.36)

a sin t

a2 − 2a cos t + 1
=

∞∑
n=1

a−n sin nt (7.5.37)

The expansion are valid for all t, assuming that a > 1.
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Problems

1. Explain why ln |2 cos t/2| and ln(tan t/2) in
−π < t < π or in 0 < t < π are not sectionally
continuous.

In each problem use ideas of this section to construct f (t) for
the given series.

2. 1 +
∞∑

n=1

cos nt

n!

3.
∞∑

n=1

(−1)n+1 sin 2nt

(2n)!

4.
∞∑

n=1

(−1)n cos(2n + 1)t

(2n + 1)!

5. 1 +
∞∑

n=1

cos 2nt

(2n)!

6. Use Eq. 7.5.36 to find the Fourier series expansion of

f (t) = 1

a2 − 2a cos t + 1

Hint: Subtract 1
2 from both sides of Eq. 7.5.36.

Equations 7.5.36 and 7.5.37 are valid for a > 1. Find f (t)
given

7.
∞∑

n=1
bn cos nt, b < 1

8.
∞∑

n=1
bn sin nt, b < 1

What Fourier series expansions arise from considerations of
the power series of each function?

9.
a

(a − z)2
, a < 1

10.
a2

a2 − z2
, a < 1

11. e−z

12. sin z

13. cosh z

14. tan−1 z
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6.1 introDuCtion

The physical systems studied thus far have been described primarily by ordinary dif-
ferential equations. We are now interested in studying phenomena that require partial 
derivatives in the describing equations as they are formed in modeling the particular 
phenomena. Partial differential equations arise where the dependent variable depends 
on two or more independent variables. The assumption of lumped parameters in a 
physical problem usually leads to ordinary differential equations, whereas the assump-
tion of a continuously distributed quantity, a fi eld, generally leads to a partial differen-
tial equation. A fi eld approach is quite common now in such undergraduate courses as 
deformable solids, electromagnetics, and fl uid mechanics; hence, the study of partial 
differential equations is often included in undergraduate programs. Many applications 
(fl uid fl ow, heat transfer, wave motion) involve second-order equations; thus, they will 
be emphasized.

The order of the highest derivative is again the order of the equation. The questions 
of linearity and homogeneity are answered as before in ordinary differential equations. 
Solutions are superposable as long as the equation is linear. In general, the number 
of solutions of a partial differential equation is very large. The unique solution corre-
sponding to a particular physical problem is obtained by use of additional  information 

Partial Differential 
Equations6
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arising from the physical situation. If this information is given on the boundary as 
boundary conditions, a boundary-value problem results. If the information is given at one 
instant as initial conditions, an initial-value problem results. A well-posed problem has just 
the right number of these conditions specified to give the solution. We shall not delve 
into the mathematical theory of making a well-posed problem. We shall, instead, rely 
on our physical understanding to determine problems that are well posed. We caution 
the reader that:

1.	 A problem that has too many boundary and/or initial conditions specified is not well 
posed and is an overspecified problem.

2.	 A problem that has too few boundary and/or initial conditions does not possess a 
unique solution.

In general, a partial differential equation with independent variables x and t which is 
second order on each of the variables requires two bits of information (this could be 
dependent on time t) at some x location (or x locations) and two bits of information at 
some time t, usually t = 0.

We are presenting a mathematical tool by way of physical motivation. We shall 
derive the describing equations of some common phenomena to illustrate the modeling 
process; other phenomena could have been chosen such as those encountered in mag-
netic fields, elasticity, fluid flows, aerodynamics, diffusion of pollutants, and so on. An 
analytical solution technique will then be introduced in this chapter. In a later chapter 
a numerical technique will be reviewed so that solutions may be obtained to problems 
that cannot be solved analytically.

We shall be particularly concerned with second-order partial differential equations 
involving two independent variables, because of the many phenomena that they model. 
The general form is written as

	 A
u
x

B
u

x y
C

u
y

D
u
x

E
u
y

Fu G
∂
∂

+
∂
∂ ∂

+
∂
∂

+
∂
∂

+
∂
∂

+ =
2

2

2 2

2 � (6.1.1)

where the coefficients may depend on x and y but are most often constants. The equa-
tions are classed depending on the coefficients A, B, and C. They are said to be

	

1 4 0

2 4 0

3

2

2

2

.

.

.

Elliptic if

Parabolic if

Hyperbolic if

B AC

B AC

B

− <

− =

− 44 0AC >
� (6.1.2)

We shall derive equations of each class and illustrate the different types of solutions 
for each. The boundary conditions are specified depending on the class of the partial 
differential equation. That is, for an elliptic equation the function (or its derivative) 
will be specified around the entire boundary enclosing a region of interest, whereas 
for the hyperbolic and parabolic equations the function cannot be specified around 
an entire boundary. It is also possible to have an elliptic equation in part of a region 
of interest and a hyperbolic equation in the remaining part. A discontinuity would 
separate the two parts of the region; a shock wave would be an example of such a 
discontinuity.

In the following three sections we shall derive the mathematical equations that 
describe several phenomena of general interest. The remaining sections will be devoted 
to the solutions of the equations.
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6.2   Wave Motion

One of the first phenomena to be modeled with a partial differential equation was that 
of wave motion. Wave motion occurs in a variety of physical situations; these include vi-
brating strings, vibrating membranes (drum heads), waves traveling through a solid bar, 
waves traveling through a solid media (earthquakes), acoustic waves, water waves, com-
pression waves (shock waves), electromagnetic radiation, vibrating beams, and oscillating 
shafts, to mention a few. We shall illustrate wave motion with several examples.

6.2.1 Vibration of a Stretched, Flexible String

The motion of a tightly stretched, flexible string was modeled with a partial differential 
equation approximately 250 years ago. It still serves as an excellent introductory exam-
ple for wave motion. We shall derive the equation that describes the motion and then in 
later sections present methods of solution.

Suppose that we wish to describe the position for all time of the string shown in 
Fig. 6.1. In fact, we shall seek a describing equation for the deflection u of the string for 
any position x and for any time t. The initial and boundary conditions will be consid-
ered in detail when the solution is presented.

L

x

y

u(x, t) 

Δx

Figure 6.1  Deformed, flexible string at an instant t.

Consider an element of the string at a particular instant enlarged in Fig. 6.2. We shall 
make the following assumptions:

1.	 The string offers no resistance to bending so that no shearing force exists on a 
surface normal to the string.

u

x

P

Mass
center

xx + Δx

u + Δu

P + ΔP

Δx
ΔW

    + ∆ α α

α

Figure 6.2  Small element of the vibrating string.

2.	 The tension P is so large that the weight of the string is negligible.
3.	 Every element of the string moves normal to the x axis.
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4.	 The slope of the deflection curve is small.
5.	 The mass m per unit length of the string is constant.
6.	 The effects of friction are negligible.

Newton’s second law states that the net force acting on a body of constant mass 
equals the mass M of the body multiplied by the acceleration  a⇀  of the center of mass of 
the body. This is expressed as

	 F M a
⇀ ⇀=∑ � (6.2.1)

Consider the forces acting in the x direction on the element of the string. Using assump-
tion 3 there is no acceleration of the element in the x direction; hence,

	 Fx =∑ 0 � (6.2.2)

or, referring to Fig. 6.2,

	 ( ) ( ) cosP P P+ + − =∆ ∆cos α α α 0 � (6.2.3)

Using assumption 4 we have

	 cos cos( )α α α≅ + ≅∆ 1 � (6.2.4)

Equation 6.2.3 then gives us

	 ∆P = 0 � (6.2.5)

showing us that the tension is constant along the string.
For the y direction we have, neglecting friction and the weight of the string,

	 P P m x
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2 2
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where m Δ x is the mass of the element and ∂ 2/∂t 2(u + Δu/2) is the acceleration of the mass 
center. Again, using assumption 4 we have
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Equation 6.2.6 can then be written as
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or, equivalently,
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Now, we let Δ x → 0, which also implies that Δu → 0. Then, using the definition,

	 lim
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x x t
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x t

x x
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2 � (6.2.10)

our describing equation becomes
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This is usually written in the form
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where we have set

	 a
P
m

= � (6.2.13)

Equation 6.2.12 is the one-dimensional wave equation and a is the wave speed. It is a trans-
verse wave; that is, it moves normal to the string. This hyperbolic equation will be 
solved in a subsequent section.

6.2.2 The Vibrating Membrane

A stretched vibrating membrane, such as a drumhead, is simply an extension into 
another dimension of the vibrating-string problem. We shall derive a partial differential 
equation that describes the deflection u of the membrane for any position (x, y) and for 
any time t. The simplest equation results if the following assumptions are made:

1.	 The membrane offers no resistance to bending, so shearing stresses are absent.
2.	 The tension τ per unit length is so large that the weight of the membrane is 

negligible.
3.	 Every element of the membrane moves normal to the xy plane.
4.	 The slope of the deflection surface is small.
5.	 The mass m of the membrane per unit area is constant.
6.	 Frictional effects are neglected.

With these assumptions we can now apply Newton’s second law to an element of 
the membrane as shown in Fig. 6.3. Assumption 3 leads to the conclusion that τ is con-
stant throughout the membrane, since there are no accelerations of the element in the x 
and y directions. This is shown on the element. In the z direction we have

	 F Maz z=∑ � (6.2.14)

For our element this becomes

	 τ α α τ α τ β β τ β∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆x x y y m x y
u
t

sin( ) sin sin( ) sin+ − + + − =
∂
∂

2

2
� (6.2.15)



Sec. 6.2 / Wave Motion    249

x

y

z

(x + Δx, y)

(x, y + Δy)(x, y)

(x + Δx, y + Δy)

α

β

   + Δβ β

   + Δα α

Δxτ

Δxτ

Δyτ

Δyτ

Figure 6.3  Element from a stretched, flexible membrane.

where the mass of the element is m Δ x Δ y and the acceleration az is ∂ 2u/∂t 2. Recognizing 
that for small angles
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we can then write Eq. 6.2.15 as

	

τ

τ

∆
∆

∆
∆

∆

x
u
y

x
x

y y t
u
y

x
x

y t

y
u

∂
∂

+ +





 −

∂
∂

+

















+
∂

2 2
, , , , 

∂∂
+ +






 −

∂
∂

+















 =

∂
∂x

x x y
y

t
u
x

x y
y

t m x y
u

∆
∆ ∆

∆ ∆, , , , 
2 2

2

tt2 � (6.2.17)

or, by dividing by Δ x Δ y,
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Taking the limit as Δ x → 0 and Δy → 0, we arrive at
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where

	 a
m

=
τ

� (6.2.20)

Equation 6.2.19 is the two-dimensional wave equation and a is the wave speed.

6.2.3  Longitudinal Vibrations of an Elastic Bar

For another example of wave motion, let us determine the equation describing the mo-
tion of an elastic bar (steel, for example) that is subjected to an initial displacement or 
velocity. An example would be striking the bar on the end with a hammer, Fig. 6.4. We 
make the following assumptions:

1.	 The bar has a constant cross-sectional area A in the unstrained state.
2.	 All cross-sectional planes remain plane.
3.	 The density r remains constant throughout the bar.
4.	 Hooke’s law may be used to relate stress and strain.

x1 x2 x

u(x1, t) u(x2, t)

Figure 6.4  Wave motion in an elastic bar.

We let u(x, t) denote the displacement of the plane of particles that were at x at t = 0. 
Consider the element of the bar between x1 and x2, shown in Fig. 6.5. We assume that 
the bar has mass ρ per unit volume. The force exerted on the element at x1 is, by Hooke’s 
law,

	 F Ex = × = × ×area stress area strain, � (6.2.21)

where E is the modulus of elasticity. The strain  at x1 is given by

	  =
elongation

unstrainedlength
� (6.2.22)

Thus, for Δ x1 small, we have the strain at x1 as

	  =
+ −u x x t u x t

x
( , ) ( , )1 1 1∆

∆ 	 (6.2.23)
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∆x1

x2
x1

u(x1, t) u(x2, t)

u(x1 + ∆x1, t)

Figure 6.5  Element of an elastic bar.

Letting Δ x1 → 0, we find that

	  =
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� (6.2.24)

Returning to the element, the force acting in the x direction is
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Newton’s second law states that
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Hence, Eqs. 6.2.25 and 6.2.26 give
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We divide Eq. 6.2.27 by (x2 – x1) and let x → x2, to give
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where the longitudinal wave speed a is given by

	 a
E

=
ρ

� (6.2.29)

Therefore, longitudinal displacements in an elastic bar may be described by the one-
dimensional wave equation with wave speed  E/ρ .

6.2.4 Transmission-Line Equations

As a final example of wave motion, we shall derive the transmission-line equations. 
Electricity flows in the transmission line shown in Fig. 6.6, resulting in a current flow 
between conductors due to the capacitance and conductance between the conductors. 
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The cable also possesses both resistance and inductance resulting in voltage drops along 
the line. We shall choose the following symbols in our analysis:

	 v(x, t) = voltage at any point along the line
	 i(x, t) = current at any point along the line
	 R = resistance per meter
	 L = self-inductance per meter
	 C = capacitance per meter
	 G = conductance per meter

∆x

∆v

∆i

Conductor

Conductor

v(x + ∆x, t)

i(x + ∆x, t)

v(x, t)

i(x, t)

i(x + ∆x, t)i(x, t)

(a) Actual element

+

−

−

−−

+ +

+

(b) Equivalent circuit

LΔx

GΔx CΔx

RΔx

i(x, t)

i(x, t)

i(x + Δx, t)

i(x + Δx, t)

Figure 6.6  Element from a transmission line.

The voltage drop over the incremental length Δ x at a particular instant (see Eqs. 1.4.3) is

	 ∆ ∆ ∆ ∆v v x x t v x t iR x L x
i
t

= + − = − −
∂
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( , ) ( , ) � (6.2.30)

Dividing by Δ x and taking the limit as Δ x → 0 yields the partial differential equation 
relating v(x, t) and i(x, t), 
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Now, let us find an expression for the change in the current over the length Δx. The 
current change is
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Again, dividing by Δ x and taking the limit as Δ x → 0 gives a second equation, 
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Take the partial derivative of Eq. 6.2.31 with respect to x and of Eq. 6.2.33 with respect 
to t. Multiplying the second equation by L and subtracting the resulting two equations, 
using ∂ 2i/∂x ∂t = ∂ 2i/∂t ∂x, presents us with
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Then, substituting for ∂i/∂x from Eq. 6.2.33 results in an equation for v(x, t) only. It is
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Take the partial derivative of Eq. 6.2.31 with respect to t and multiply by C; take the 
partial derivative of Eq. 6.2.33 with respect to x, subtract the resulting two equations and 
substitute for ∂v/∂x from Eq. 6.2.31; there results
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The two equations above are difficult to solve in the general form presented; two 
special cases are of interest. First, there are conditions under which the self-inductance, 
and leakage due to the conductance between conductors, are negligible; that is, L ≅ 0, 
and G ≅ 0. Then our equations become
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Second, for a condition of high frequency a time derivative increases the magnitude of 
a term*; that is, ∂ 2i/∂t 2  ∂i/∂t  i. Thus, our general equations can be approximated by
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*As an example, consider the term sin (ω t + x/L) where ω  1. Then
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These latter two equations are wave equations with the units on   1/LC   of  
meters/second.

Although we shall not discuss any other wave phenomenon, it is well for the reader 
to be aware that sound waves, light waves, water waves, quantum-mechanical systems, 
and many other physical systems are described, at least in part, by a wave equation.

6.3 �The D’Alembert Solution 
of the Wave Equation

It is possible to solve all the partial differential equations that we have derived in this chap-
ter by a general method, the separation of variables. The wave equation can, however, be 
solved by a more special technique that will be presented in this section. It gives a quick 
look at the motion of a wave. We obtain a general solution to the wave equation
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by a proper transformation of variables. Introduce the new independent variables ξ (xi) 
and h (eta):

	 ξ η= − = +x at x at, � (6.3.2)

Then, using the chain rule we find that
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and
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Substitute the expressions above into the wave equation to obtain
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and there results
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Integration with respect to ξ gives

	
∂
∂

=
u

h
η

η( ) � (6.3.7)

where h(η) is an arbitrary function of η (for an ordinary differential equation, this would 
be a constant). A second integration yields

	 u h d g( , ) ( ) ( )ξ η η η ξ= +∫ � (6.3.8)

The integral is a function of η only and is replaced by f (η), so the solution is

	 u g f( , ) ( ) ( )ξ η ξ η= + � (6.3.9)

or, equivalently, 

	 u x t g x at f x at( , ) ( ) ( )= − + + � (6.3.10)

This is the D’Alembert solution of the wave equation.
Inspection of the equation above shows the wave nature of the solution. Consider 

an infinite string, stretched from -∞ to +∞, with an initial displacement u(x, 0) =  
g (x) + f (x), as shown in Fig. 6.7. At some later time t = t1 the curves g(x) and f (x) will sim-
ply be displaced to the right and left, respectively, a distance at1. The original deflection 
curves move without distortion at the speed of propagation a.

x
String

f(x + at1)

at1 at1

g(x − at1)

(b) Displacement after a time t1

x

t = 0 u(x, 0)

f(x) and g(x)

(a) Initial displacement

Figure 6.7  Traveling wave in a string.

To determine the form of the functions g(x) and f (x) when u(x, 0) is given, we use 
the initial conditions. The term ∂ 2u/∂t 2 in the wave equation demands that two bits of 
information be given at t = 0. Let us assume, for example, that the initial velocity is zero 
and that the initial displacement is given by

	 u x f x g x x( , ) ( ) ( ) ( )0 = + = φ � (6.3.11)

The velocity is
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At t = 0 this becomes (see Eqs. 6.3.2 and 6.3.10)

	
∂
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= − + =
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a
df
dx

a( ) ( ) 0 � (6.3.13)

Hence, we have the requirement that

	
dg
dx

df
dx

= � (6.3.14)

which is integrated to provide us with

	 g f C= + � (6.3.15)

Inserting this in Eq. 6.3.11 gives

	 f x
x C

( )
( )

= −
φ
2 2

� (6.3.16)

so that

	 g x
x C

( )
( )

= +
φ
2 2

� (6.3.17)

Finally, replacing x in f (x) with x + at and x in g(x) with x - at, there results the specific 
solution for the prescribed initial conditions, 

	 u x t x at x at( , ) ( ) ( )= − + +
1
2

1
2

φ φ � (6.3.18)

Our result shows that, for the infinite string, two initial conditions are necessary to 
determine the solution. A finite string will be discussed in the following section.

Example 6.1

Consider that the string in this article is given an initial velocity θ (x) and zero initial 
displacement. Determine the form of the solution.

Solution
The velocity is given by Eq. 6.3.12:
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η

At t = 0 this takes the form

θ ( )x a
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a
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= −

This is integrated to yield

f g
a

s ds C
x

− = +∫1 0

θ ( )
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where s is a dummy variable of integration. The initial displacement is zero, giving

u x f x g x( , ) ( ) ( )0 0= + =

or, 

f x g x( ) ( )= −

The constant of integration C is thus evaluated to be

C f g= = −2 0 2 0( ) ( )

Combining this with the relation above results in

f x
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s ds f
x

( ) ( ) ( )= +∫1
2
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θ

    g x
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s ds g
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( ) ( ) ( )= − +∫1
2

0
0

θ

Returning to Eq. 6.3.10, we can obtain the solution u(x, t) using the forms above for 
f (x) and g(x) simply by replacing x by the appropriate quantity. We then have the 
solution

u x t
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s ds s ds
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s ds
x at

x at

θ ( )

For a given θ (x) this expression would provide us with the solution.

Example 6.2

An infinite string is subjected to the initial displacement

φ( )
.

x
x

=
+
0 02

1 9 2

Find an expression for the subsequent motion of the string if it is released from rest. 
The tension is 20 N and the mass per unit length is 5 × 10–4 kg/m. Also, sketch the 
solution for t = 0, t = 0.002 s, and t = 0.01 s.

Solution
The motion is given by the solution of this section. Equation 6.3.18 gives it as

u x t
x at x at

( , )
.
( )

.
( )

=
+ −

+
+ +

1
2

0 02
1 9

1
2

0 02
1 92 2
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The wave speed a is given by

	 a
P
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=

		  =
×

=
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The solution is then

u x t
x t x t
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.

( )
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+

+ +
0 01

1 9 200
0 01

1 9 2002 2

The sketches are presented in Fig. 6.8.

t = 0.002 s

1

u

x

t = 0 s

u

x

   = 0.02
1 + 9x2

φ

t = 0.01 s

2−2

u

x

0.01
1 + 9(x + 2)2

0.01
1 + 9(x − 2)2

Figure 6.8

6.4  Separation of Variables

We shall now present a powerful technique used to solve many of the partial differen-
tial equations encountered in physical applications in which the domains of interest 
are finite. It is the method of separation of variables. Even though it has limitations, it is 
a widely used technique. It involves the idea of reducing a more difficult problem to 
several simpler problems; here, we shall reduce a partial differential equation to several 
ordinary differential equations for which we already have methods of solution. Then, 
hopefully, by satisfying the initial and boundary conditions, a solution to the partial 
differential equation can be found.
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To illustrate the details of the method, let us use the mathematical description of a 
finite string of length L that is fixed at both ends and is released from rest with an initial 
displacement. The motion of the string is described by the wave equation
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u
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a
u

x
� (6.4.1)

We shall, as usual, consider the wave speed a to be a constant. The boundary conditions 
of fixed ends may be written as

	 u t( , )0 0= � (6.4.2)

and

	 u L t( , ) = 0 � (6.4.3)

Since the string is released from rest, the initial velocity is zero; hence, 

	
∂
∂

=
u
t
x( , )0 0� (6.4.4)

The initial displacement will be denoted by f (x); we then have

	 u x f x( , ) ( )0 = � (6.4.5)

We assume that the solution of our problem can be written in the separated form

	 u x t X x T t( , ) ( ) ( )= � (6.4.6)

that is, the x variable separates from the t variable. Substitution of this relationship into 
Eq. 6.4.1 yields

	 X x T t a X x T t( ) ( ) ( ) ( )″ ″= 2 � (6.4.7)

where the primes denote differentiation with respect to the associated independent 
variable. Rewriting Eq. 6.4.7 results in

	
T
a T

X
X

″ ″
2

= � (6.4.8)

The left side of this equation is a function of t only and the right side is a function of x 
only. Thus, as we vary t holding x fixed, the right side cannot change; this means that 
T″(t)/a2T(t) must be the same for all t. As we vary x holding t fixed the left side must not 
change. Thus, the quantity X″(x)/ X(x) must be the same for all x. Therefore, both sides 
must equal the same constant value μ (mu) sometimes called the separation constant. 
Equation 6.4.8 may then be written as two equations:

	 T a T″ − =µ 2 0 � (6.4.9)

	        X X″ − =µ 0 � (6.4.10)

We note at this point that we have separated the variables and reduced a partial dif-
ferential equation to two ordinary differential equations. If the boundary conditions can be 
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satisfied, then we have succeeded with our separation of variables. We shall assume 
that we need to consider μ only as a real number. Thus, we are left with the three cases;

	 µ > 0

	 µ = 0 � (6.4.11)

	 µ < 0

For any nonzero value of μ, we know that the solutions of these second-order ordinary 
differential equations are of the form emt and enx, respectively (see Section 1.5). The char-
acteristic equations are

	 m a2 2 0− =µ � (6.4.12)

	      n2 0− =µ � (6.4.13)

The roots are

	 m a m a1 2= = −µ µ, � (6.4.14)

	   n n1 2= = −µ µ, � (6.4.15)

The resulting solutions are

	 T t c e c eat at( ) = + −
1 2

µ µ � (6.4.16)

and

	 X x c e c ex x( ) = + −
3 4

µ µ � (6.4.17)

Now, consider the three cases, μ > 0, μ = 0, and μ < 0. For μ > 0, we have the result that 
⋅ µ  is a real number and the general solution is

	 u x t T t X x c e c e c e c eat at x x( , ) ( ) ( ) ( )( )= = + +− −
1 2 3 4

µ µ µ µ � (6.4.18)

which is a decaying or growing exponential. The derivative of Eq. 6.4.18 with respect to 
time would yield the velocity and it, too, would be growing or decaying with respect 
to time. This, of course, means that the kinetic energy of an element of the string would 
be increasing or decreasing in time, as would the total kinetic energy. However, energy 
remains constant; therefore, this solution violates the basic law of physical conservation 
of energy. The solution also does not give the desired wave motion and the boundary 
and initial conditions cannot be satisfied; thus, we cannot have μ > 0. Similar arguments 
prohibit the use of μ = 0. Hence, we are left with μ < 0; for simplicity, let

	 µ β= i � (6.4.19)

where β is a real number and i is −1. For this case, Eq. 6.4.16 becomes

	 T t c e c ei at i at( ) = + −
1 2

β β � (6.4.20)

and Eq. 6.4.17 becomes

	 X x c e c ei x i x( ) = + −
3 4

β β � (6.4.21)
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Using the relation

	 e iiθ θ θ= +cos sin � (6.4.22)

Eqs. 6.4.20 and 6.4.21 may be rewritten as

	 T t A at B at( ) sin cos= +β β � (6.4.23)

and

	 X x C x D x( ) sin cos= +β β � (6.4.24)

where A, B, C, and D are new constants. The relation of the new constants in terms of the 
constants c1, c2, c3, and c4 is left as an exercise.

Now that we have solutions to Eqs. 6.4.9 and 6.4.10 that are periodic in time and 
space, let us attempt to satisfy the boundary conditions and initial conditions given in 
Eqs. 6.4.2 through 6.4.5. Our solution thus far is

	 u x t A at B at C x D x( , ) ( sin cos )( sin cos )= + +β β β β � (6.4.25)

The boundary condition u(0, t) = 0 states that u is zero for all t at x = 0; that is, 

	 u t A at B at D( , ) ( sin cos )0 0= + =β β � (6.4.26)

The only way this is possible is to have D = 0. Hence, we are left with

	 u x t A at B at C x( , ) ( sin cos ) sin= +β β β � (6.4.27)

The boundary condition u(L, t) = 0 states that u is zero for all t at x = L; this is expressed 
as

	 u L t A at B at C L( , ) ( sin cos ) sin= +β β β � (6.4.28)

This is possible if

	 sin βL = 0 � (6.4.29)

For this to be true, we must have

	 β πL n n= =, , , ,1 2 3 � � (6.4.30)

or β = nπ/L; the quantity β is called an eigenvalue. When the β is substituted back into  
sin βx, the function sin nπx/L is called an eigenfunction. Each eigenvalue corresponding to 
a particular value of n produces a unique eigenfunction. Note that the n = 0 eigenvalue 
(μ = 0) has already been eliminated as a possible solution, so it is not included here. The 
solution given in Eq. 6.4.27 may now be written as

	 u x t A
n at
L

B
n at
L

C
n x
L

( , ) sin cos sin= +







π π π
� (6.4.31)

For simplicity, let us make the substitutions

	 AC a BC bn n= =, � (6.4.32)
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since each value of n may require different constants. Equation 6.4.31 is then

	 u x t a
n at
L

b
n at
L

n x
Ln n n( , ) sin cos sin= +








π π π
� (6.4.33)

where the subscript n has been added to u(x, t) to allow for a different function for each 
value of n.

For our vibrating string, each value of n results in harmonic motion of the string 
with frequency na/ 2L cycles per second (hertz). For n = 1 the fundamental mode results, 
and for n > 1 overtones result; see Fig. 6.9. Nodes are those points of the string which do 
not move. The velocity ∂un /∂t is then
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π π π π
cos sin sin � (6.4.34)

n = 3 n = 4

n = 1 n = 2

Node
t2

t3

t4

t1

Figure 6.9  Harmonic motion. The solution at various values of time t is as shown.

Thus, to satisfy b.c. (6.4.4), 
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L
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n x
L

n
n( , ) sin0 0

π π
� (6.4.35)

for all x, we must have an = 0. We are now left with

	 u x t b
n at
L

n x
Ln n( , ) cos sin=

π π
� (6.4.36)

If we are to solve our problem, we must satisfy boundary condition (6.4.5), 

	 u x f xn( , ) ( )0 = � (6.4.37)

But, unless f (x) is a multiple of sin nπ x/L, no one value of n will satisfy Eq. 6.4.37. How 
do we then satisfy the boundary condition u(x, 0) = f (x) if f (x) is not a sine function?

Equation 6.4.36 is a solution of Eq. 6.4.1 and satisfies Eqs. 6.4.2 through 6.4.4 for all 
n, n = 1, 2, 3, …. Hence, any linear combination of any of the solutions

	 u x t b
n at
L

n x
L

nn n( , ) cos sin , , , ,= =
π π

1 2 3 � � (6.4.38)
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is also a solution, since the describing equation is linear and superposition is allowed. 
If we assume that for the most general function f (x) we need to consider all values of n, 
then we should try

	 u x t u x t b
n at
L

n x
Ln

n

n

n

( , ) ( , ) cos sin= =
=

∞

=

∞

∑ ∑
1 1

π π
� (6.4.39)

For the i.c. (6.4.5), we then have

	 u x b
n x
L

f xn

n

( , ) sin ( )0
1

= =
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∞

∑ π
� (6.4.40)

If constants bn can be determined to satisfy Eq. 6.4.40, then we have a solution anywhere 
that the sum in Eq. 6.4.39 converges. The series in Eq. 6.4.40 is a Fourier sine series. It was 
presented in Section 1.10, but the essential features will be repeated here.

To find the bn’s, multiply the right side of Eq. 6.4.40 by sin mπx/L to give

	 sin sin ( )sin
m x
L

b
n x
L

f x
m x
Ln

n

π π π
=
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� (6.4.41)

Now integrate both sides of Eq. 6.4.41 from x = 0 to x = L. We may take sin mπx/L inside 
the sum, since it is a constant as far as the summation is concerned. The integral and the 
summation may be switched if the series converges properly. This may be done for most 
functions of interest in physical applications. Thus, we have

	 b
n x
L

m x
L

dx f x
m x
L

dxn

n

LL

=

∞
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1 00

sin sin ( )sin
π π π
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With the use of trigonometric identities we can verify* that

	 sin sin
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Hence, Eq. 6.4.42 gives us

	 b
L

f x
n x
L

dxn

L

= ∫2 0

( )sin
π

� (6.4.44)

if f (x) may be expressed by

	 f x b
n x
Ln

n

( ) sin=
=

∞

∑ π

1
� (6.4.45)

Equation 6.4.45 gives the Fourier sine series representation of f (x) with the coefficients 
given by Eq. 6.4.44. Examples will illustrate the use of the above equations for particular 
functions f (x).

*Use the trigonometric identities sin sin [cos( ) cos( )]α β α β α β= − − +
1
2

 and sin cos .2 1
2

1
2

2α α= −
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Example 6.3

A tight string 2 m long with a = 30 m/s is initially at rest but is given an initial velocity 
of 300 sin 4πx from its equilibrium position. Determine the maximum displacement 
at the x = 1

8 m location of the string.

Solution
We assume that the solution to the describing differential equation

∂
∂

=
∂
∂

2

2

2

2
900

u
t

u
x

can be separated as

u x t T t X x( , ) ( ) ( )=

Following the procedure of the previous section, we substitute into the describing 
equation to obtain

1
900

2T
T

X
X

″ ″
= = −β

where we have chosen the separation constant to be –β2 so that an oscillatory motion 
will result. The two ordinary differential equations that result are

T T″ + =900 02β

         X X″ + =β 2 0

The general solutions to the equations above are

        T t A t B t( ) sin cos= +30 30β β

X x C x D x( ) sin cos= +β β

The solution for u(x, t) is then

u x t A t B t C x D x( , ) ( sin cos )( sin cos )= + +30 30β β β β

The end at x = 0 remains motionless; that is, u(0, t) = 0. Hence, 

u t A t B t D( , ) ( sin cos )( )0 30 30 0 0= + + =β β

Thus, D = 0. The initial displacement u(x, 0) = 0. Hence, 

u x B C x( , ) ( )0 0 0= + =sin β

Thus, B = 0. The solution reduces to

u x t AC t x( , ) sin= 30β βsin
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The initial velocity ∂u/∂t is given as 300 sin 4π x. We then have, at t = 0, 

∂
∂

= =
u
t

AC x x30 300 4β β πsin sin

This gives

β π
π π

= = =4
300

30 4
2 5

,
( )

.
AC

The solution for the displacement is finally

u x t t x( , )
.
sin sin=

2 5
120 4

π
π π

We have not imposed the condition that the end at x = 2 m is motionless. Insert x = 2 
in the expression above and it is obvious that this boundary condition is satisfied; 
thus we have found an acceptable solution.

The maximum displacement at x = 1/8 m occurs when sin 120π t = 1. Thus, the 
maximum displacement is

umax
.

=
2 5
π

m

Note that we did not find it necessary to use the general expression given by  
Eq. 6.4.39. We could have, but it would have required more work to obtain a solution. 
This happened because the initial condition was given as a sine function. Any other 
function would require the more general form given by Eq. 6.4.39.

Example 6.4

Determine several coefficients in the series solution for u(x, t) for the vibrating string if

f x
x x

x x
( )

.

. .
=

≤ ≤
− < ≤





0 1 0 1
0 2 0 1 1 2

The string is 2 m long. Use the boundary and initial conditions of Section 6.4.

Solution
The solution for the displacement of the string is given by Eq. 6.4.39. It is

u x t b
n at n x

n

n

( , ) cos sin=
=

∞

∑ π π
2 2

1

where we have used L = 2 m. The coefficients bn are related to the initial displacement 
f (x) by Eq. 6.4.44, 

b f x
n x

dxn = ∫22 20

2

( )sin
π
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Substituting for f (x) results in

b x
n x

dx x
n x

dxn = + −∫ ∫0 1
2

0 1 2
20

1

1

2

. sin . ( )sin
π π

Performing the integrations (integration by parts* is required) gives

b
x

n
n x

n
n x

n
n x x

n

n = − +





+ − +

0 1
2

2
4

2

0 1
4

2
2

2 2
0

1

. cos sin

. cos

π
π

π
π

π
π

ππ
π

π
π

cos sin
n x

n
n x

2
4

22 2
1

2

−





By being careful in reducing this result, we have

b
n

n
n =

0 8
22 2

.
sin

π
π

This gives several bn’s as

b b b b b1 2 2 3 2 4 5 2

0 8
0

0 8
9

0
0 8
25

= = = − = =
.
, ,

.
, ,

.
π π π

The solution is, finally, 

u x t
at x at x

( , )
.

cos sin cos sin= −


0 8
2 2

1
9

3
2

3
22π

π π π π

	 + + 


1
25

5
2

5
2

cos sin
π πat x

�

We see that the amplitude of each term is getting smaller and smaller. A good approx-
imation results if we keep several terms (say five) and simply ignore the rest. This, 
in fact, was done before the advent of the computer. With the computer many more 
terms can be retained, with accurate numbers resulting from the calculations. A com-
puter plot of the solution above is shown in Fig. 6.10 for a = 100 m/s. One hundred 
terms were retained.
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 t
)

t = 0.008 s
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Figure 6.10

*We shall integrate x x dxsin
0

π
∫  by parts. Let u = x and dv = sin x dx. Then du = dx and v = –cos x. The inte-

gral is then x x dx x x x dxsin cos cos .= − + =∫ ∫00 0

ππ π
π
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Example 6.5

A tight string, π m long and fixed at both ends, is given an initial displacement f (x) 
and an initial velocity g(x). Find an expression for u(x, t).

Solution
We follow the steps of Section 6.4 and find the general solution to be

u x t A at B at C x D x( , ) ( sin cos )( sin cos )= + +β β β β

Using the b.c. that the left end is fixed, that is, u(0, t) = 0, we have D = 0. We also have 
the b.c. that u(π, t) = 0, giving

0 = (A sin β at + B cos β at)C sin βπ.

If we let C = 0, a trivial solution results, u(x, t) = 0. Thus, we must let

βπ π= n

or β = n, an integer. The general solution is then

u x t a nat b nat nxn n n( , ) ( sin cos )sin= +

where the subscript n on un(x, t) allows for a different u(x, t) for each value of n. The 
most general u(x, t) is then found by superposing all of the un(x, t); that is, 

	 u x t u x t a nat b nat nxn
n

n n
n

( , ) ( , ) ( sin cos )sin= = +
=

∞

=

∞

∑ ∑
1 1

� (1)

Now, to satisfy the initial displacement, we require that

u x b nx f xn
n

( , ) sin ( )0
1

= =
=

∞

∑

Multiply by sin mx and integrate from 0 to π. Using the results indicated in Eq. 6.4.43, 
we have

	 b f x nx dxn = ∫2 0π

π

( )sin � (2)

Next, to satisfy the initial velocity, we must have

∂
∂

= =
=

∞

∑u
t
x a an nx g xn

n

( , ) sin ( )0
1

Again, multiply by sin mx and integrate from 0 to π. Then

	 a
an

g x nx dxn = ∫2

0π

π

( )sin � (3)

Our solution is now complete. It is given by Eq. 1 with the bn provided by Eq. 2 and 
the an by Eq. 3. If f (x) and g(x) were specified numerical values for each bn and an 
would result.
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Example 6.6

A tight string, π m long, is fixed at the left end but the right end moves, with displace-
ment 0.2 sin 15t. Find u(x, t) if the wave speed is 30 m/s and state the initial condi-
tions if a solution using separation of variables is to be possible.

Solution
Separation of variables leads to the general solution as

u x t A t B t C x D x( , ) ( sin cos )( sin cos )= + +30 30β β β β

The left end is fixed, requiring that u(0, t) = 0. Hence, D = 0. The right end moves with 
the displacement 0.2 sin 15t; that is, 

u t t A t B t C( , ) . sin ( sin cos ) sinπ β β βπ= = +0 2 15 30 30

This can be satisfied if we let

B AC= = =0
1
2

0 2, , .β

The resulting solution for u(x, t) is

u x t t
x

( , ) . sin sin= 0 2 15
2

The initial displacement u(x, 0) must be zero and the initial velocity must be

∂
∂

=
u
t
x

x
( , ) sin0 3

2

Any other set of initial conditions would not allow a solution using separation of 
variables.

Example 6.7

A tight string is fixed at both ends. A forcing function (this could be due to wind 
blowing over a wire), applied normal to the string, is given by F (t) = Km sin ωt kilo-
grams per meter of length. Show that resonance occurs whenever ω = anπ/L.

Solution
The forcing function F (t) multiplied by the distance Δx can be added to the right-
hand side of Eq. 6.2.8. Dividing by mΔx results in

a
u

x
u
t

K t2
2

2

2

2

∂
∂

=
∂
∂

+ sinω

where a 2 = P/m. This is a nonhomogeneous partial differential equation, since the last 
term does not contain the dependent variable u(x, t). As with ordinary differential 
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equations that are linear, we can find a particular solution and add it to the solution 
of the associated homogeneous equation to form the general solution.

We assume that the effect of the forcing function will be to produce a displace-
ment having the same frequency as the forcing function, as was the case with lumped 
systems. This suggests that the particular solution has the form

u x t X x tρ ω( , ) ( )sin=

Substituting this into the partial differential equation gives

a X t X t K t2 2″sin sin sinω ω ω ω= − +

The sin ωt divides out and we are left with the ordinary differential equation

X
a

X K″ + =
ω 2

2

The general solution to this nonhomogeneous differential equation is (see Section 1.8)

X x c
a
x c

a
x

Ka
( ) sin cos= + +1 2

2

2

ω ω
ω

We will force this solution to satisfy the end conditions that apply to the string. Hence, 

	 X c
Ka

( )0 0 2

2

2
= = +

ω

X L c
L
a

c
L
a

Ka
( ) sin cos= = + +0 1 2

2

2

ω ω
ω

The equations above give

c
Ka

c

Ka L
a

L a2

2

2 1

2

2 1
= − =

−







ω
ω

ω

ω
,

cos

sin( )/

The particular solution is then

u x t
Ka

L
a
L a

x
a

x
ap ( , )

cos

sin( )
sin cos sin=

−
− +

















2

2

1
1

ω

ω

ω
ω ω

/
ωωt

The amplitude of the above becomes infinite whenever sin ωL/a = 0 and cos ωL/a = –1. 
This occurs whenever

ω
π

L
a

n= −( )2 1
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Hence, if the input frequency is such that

ω
π

=
−

=
( )

, , , ,
2 1

1 2 3
n a

L
n �

the amplitude of the resulting motion becomes infinitely large. This equals the natu-
ral frequency corresponding to the fundamental mode or one of the significant over-
tones of the string, depending on the value of n. Thus, we see that a number of input 
frequencies can lead to resonance in the string. This is true of all phenomena modeled 
by the wave equation. Recall that we have neglected any type of damping.

6.5  Diffusion

Another class of physical problems exists that is characterized by diffusion equations. 
Diffusion may be likened to a spreading, smearing, or mixing. A physical system that 
has a high concentration of variable ϕ in volume A and a low concentration of ϕ in vol-
ume B may tend to diffuse so that the concentrations in A and B approach equality. This 
phenomenon is exhibited by the tendency of a body toward a uniform temperature. One 
of the most common diffusion processes that is encountered is the transfer of energy in 
the form of heat.

From thermodynamics we learn that heat is thermal energy in transit. It may be 
transmitted by conduction (when two bodies are in contact), by convection (when a 
body is in contact with a liquid or a gas), and by radiation (when energy is transmitted 
by energy waves). We shall consider the first of these mechanisms in some detail. Ex-
perimental observations have been organized to permit us to make the following two 
statements:

1.	 Heat flows in the direction of decreasing temperature.
2.	 The rate at which energy in the form of heat is transferred through an area is 

proportional to the area and to the temperature gradient normal to the area.

These statements must be expressed analytically. The heat flux through an area A ori-
ented normal to the x axis is

	 Q KA
T
x

= −
∂
∂

� (6.5.1)

where Q (watts per second, W/s) is the heat flux, ∂T/∂x is the temperature gradient 
normal to A, and K (W/m ⋅ s ⋅ K) is a constant of proportionality called the thermal con-
ductivity. The minus sign is present since heat is transferred in the direction opposite the 
temperature gradient.

The energy (usually called internal energy) gained or lost by a body of mass m that 
undergoes a uniform temperature change ΔT is expressed as

	 ∆ ∆E Cm T= � (6.5.2)

where ΔE (W) the energy change of the body and C (W/kg ⋅ K) is a constant of propor-
tionality called the specific heat.
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Conservation of energy is a fundamental law of nature. We shall use this law to 
make an energy balance on the element in Fig. 6.11. The density ρ of the element will be 
used to determine its mass, namely, 

	 m x y z= ρ ∆ ∆ ∆ � (6.5.3)

Δx

Δz

Δy

y

z

x

GC

B

A E

H
D

F

(x, y, z)

Q(x +      , y, z +      )Δx
2

Δz
2 Q(x +      , y + Δy, z +      )Δx

2
Δz
2

Figure 6.11  Element of mass.

By energy balance we mean that the net energy flowing into the element in time Δt must 
equal the increase in energy in the element in Δt. For simplicity, we shall assume that 
there are no sources inside the element. Equation 6.5.2 gives the change in energy in the 
element as

	 ∆ ∆ ∆ ∆ ∆ ∆E Cm T C x y z T= = ρ � (6.5.4)

The energy that flows into the element through face ABCD in Δt is, by Eq. 6.5.1, 

	 ∆ ∆ ∆ ∆ ∆
∆

∆

E Q t K x z
T
y

tABCD ABCD
x x
y
z z

= = −
∂
∂ +

+

/

/

2

2

� (6.5.5)

where we have approximated the temperature derivative by the value at the center of 
the face. The flow into the element through face EFGH is

	 ∆ ∆ ∆ ∆
∆
∆
∆

E K x z
T
y

tEFGH
x x
y y
z z

=
∂
∂ +

+
+

/

/

2

2

� (6.5.6)

Similar expressions are found for the other four faces. The energy balance then pro-
vides us with

	 ∆ ∆ ∆ ∆ ∆ ∆ ∆E E E E E E EABCD EFGH ADHE BCGF DHGC BFEA= + + + + + � (6.5.7)
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or, using Eqs. 3.5.5, 3.5.6, and their counterparts for the x and z directions, 

C x y z T K x z
T
y

T
yx x

y y
z z

x x
y
z z

ρ ∆ ∆ ∆ ∆ ∆ ∆
∆
∆
∆

∆

∆

=
∂
∂

−
∂
∂






 +

+
+

+

+

/

/

/

/

2

2

2

2










∆t

	 +
∂
∂

−
∂
∂

















+
+
+

+
+

K y z
T
x

T
x

t
x x
y y
z z

x
y y
z z

∆ ∆ ∆
∆
∆
∆

∆
∆

/
/

/
/

2
2

2
2

	 +
∂
∂

−
∂
∂

















+
+
+

+
+

K x y
T
z

T
z

t
x x
y y
z z

x x
y y
z

∆ ∆ ∆
∆
∆
∆

∆
∆

/
/

/
/

2
2

2
2

� (6.5.8)

Both sides of the equation are divided by Cρ Δ x Δ y Δ z Δt, then let Δ x → 0, Δ y → 0, 
Δ z → 0, Δt → 0; there results

	
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂











T
t

k
T
x

T
y

T
z

2

2

2

2

2

2 � (6.5.9)

where k = K/Cρ is called the thermal diffusivity and is assumed constant. It has dimen-
sions of square meters per second (m 2/s). Equation 6.5.9 is a diffusion equation

Two special cases of the diffusion equation are of particular interest. A number of 
situations involve time and only one coordinate, say x, as in a long, slender rod with 
insulated sides. The one-dimensional heat equation then results. It is given by

	
∂
∂

=
∂
∂

T
t

k
T
x

2

2 � (6.5.10)

which is a parabolic equation.
In some situations ∂T/∂t is zero and we have a steady-state condition; then we no 

longer have a diffusion equation, but the equation

	
∂
∂

+
∂
∂

+
∂
∂

=
2

2

2

2

2

2
0

T
x

T
y

T
z

� (6.5.11)

This equation is known as Laplace’s equation. It is sometimes written in the shorthand form

	 ∇ =2 0T � (6.5.12)

If the temperature depends only on two coordinates x and y, as in a thin rectangular 
plate, an elliptic equation is encountered, 

	
∂
∂

+
∂
∂

=
2

2

2

2
0

T
x

T
y

� (6.5.13)

Cylindrical or spherical coordinates (see Fig. 6.12) should be used in certain geome-
tries. It is then convienient to express ∇ 2T in cylindrical coordinates as

	 ∇ =
∂
∂

∂
∂







 +

∂
∂

+
∂
∂

=2
2

2

2

2

2

1 1
0T

r r
r

T
r r

T T
zθ

� (6.5.14)
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and in spherical coordinates as

	 ∇ =
∂
∂

∂
∂







 +

∂
∂

+
∂
∂

∂
∂




2

2
2

2 2

2

2 2

1 1 1
T

r r
r

T
r r

T
r

T
sin sin

sin
φ θ φ φ

φ
φ



 � (6.5.15)

(a) Cylindrical coordinates (b) Spherical coordinates
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Figure 6.12  Cylindrical and spherical coordinates.

Our discussion of heat transfer has included heat conduction only. Radiative and 
convective forms of heat transfer would necessarily lead to other partial differential 
equations. We have also assumed no heat sources in the volume of interest, and have 
assumed the conductivity K to be constant. Finally, the specification of boundary and 
initial conditions would make our problem statement complete. These will be reserved 
for the following section in which a solution to the diffusion equation is presented.

6.6  Solution of the Diffusion Equation

This section will be devoted to a solution of the diffusion equation developed in 
Section 6.5. Recall that the diffusion equation is

	
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂











T
t

k
T
x

T
y

T
z

2

2

2

2

2

2 � (6.6.1)

Heat transfer will again be used to illustrate this very important phenomenon. The pro-
cedure developed for the wave equation will be used, but the solution will be quite dif-
ferent, owing to the presence of the first derivative with respect to time rather than the 
second derivative. This requires only one initial condition instead of the two required by 
the wave equation. We shall illustrate the solution technique with three specific situations.

6.6.1 A  Long, Insulated Rod with Ends at Fixed Temperatures

A long rod, shown in Fig. 6.13, is subjected to an initial temperature distribution along 
its axis; the rod is insulated on the lateral surface, and the ends of the rod are kept at the 
same constant temperature.* The insulation prevents heat flux in the radial direction; 

*We shall choose the temperature of the ends in the illustration to be 0°C. Note, however, that both ends could 
be held at any temperature T0. Since it is necessary to have the ends maintained at zero, we would simply 
define a new variable θ = T – T0, so that θ = 0 at both ends. We would then find a solution for θ (x, t) with the 
desired temperature given by T(x, t) = θ (x, t) + T0.
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x

L

Figure 6.13  Heated rod.

hence, the temperature will depend on the x coordinate only. The describing equation is 
then the one-dimensional heat equation, given by Eq. 6.5.10, as

	
∂
∂

=
∂
∂

T
t

k
T
x

2

2 � (6.6.2)

We shall choose to hold the ends at T = 0°. These boundary conditions are expressed as

	 T t T L t( , ) , ( , )0 0 0= = � (6.6.3)

Let the initial temperature distribution be represented by

	 T x f x( , ) ( )0 = � (6.6.4)

We assume that the variables separate; that is, 

	 T x t t X x( , ) ( ) ( )= θ � (6.6.5)

Substitution of Eq. 6.6.5 into 6.6.2 yields

	 ′ =θ θX k X″ � (6.6.6)

where θ ′ = dθ/dt and X″ = d2X/dx2. This is rearranged as

	
′
=

θ
θk

X
X
″

� (6.6.7)

Since the left side is a function of t only and the right side is a function of x only, we set 
Eq. 6.6.7 equal to a constant λ (lambda). This gives

	 ′ − =θ λ θk 0 � (6.6.8)

and

	 X X″ − =λ 0 � (6.6.9)

The solution of Eq. 6.6.8 is of the form

	 θ λ( )t c e kt= 1 � (6.6.10)

Equation 6.6.9 yields the solution

	 X x c e c ex x( ) = + −
2 3

λ λ � (6.6.11)

Again, we must decide whether

	 λ λ λ> = <0 0 0, , � (6.6.12)
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For λ > 0, Eq. 6.6.10 shows that the solution has a nearly infinite temperature at large 
t due to exponential growth; of course, this is not physically possible. For λ = 0, the 
solution would be independent of time. Again our physical intuition tells us this is not 
expected. Therefore, we are left with λ < 0. If we can satisfy the boundary conditions, 
then we have found a solution. Let

	 β λ2 = − � (6.6.13)

so that

	 β 2 0> � (6.6.14)

The solutions, Eqs. 6.6.10 and 6.6.11, may then be written as

	 θ β( )t Ae kt= − 2

� (6.6.15)
and

	 X x B x C x( ) sin cos= +β β � (6.6.16)

where A, B, and C are arbitrary constants to be determined. Therefore, our solution is

	 T x t Ae B x C xkt( , ) sin cos= +[ ]−β β β2 � (6.6.17)

The first condition of Eq. 6.6.3 implies that

	 C = 0 � (6.6.18)

Therefore, our solution reduces to

	 T x t De xkt( , ) sin= −β β2

� (6.6.19)

where D = A . B. The second boundary condition of Eq. 6.6.3 requires that

	 sin βL = 0 � (6.6.20)

This is satisfied if

	 β π β πL n n L n= = =, , , , ,or / 1 2 3 … � (6.6.21)

The constant β is the eigenvalue, and the function sin nπ x/L is the eigenfunction. The 
solution is now

	 T x t T x t D e
n x
Ln

n

n
kn t L

n

( , ) ( , ) sin/= =
=

∞

−

=

∞

∑ ∑
1 1

2 2 2π π
� (6.6.22)

The initial condition, (6.6.4), may be satisfied at t = 0 if

	 T x f x D
n x
Ln

n

( , ) ( ) sin0
1

= =
=

∞

∑ π
� (6.6.23)

that is, if f (x) can be expanded in a Fourier sine series. If such is the case, the coefficients 
will be given by (refer to Eqs. 6.4.42–6.4.44)

	 D
L

f x
n x
L

dxn

L

= ∫2 0

( )sin
π

� (6.6.24)

and the separation-of-variables technique is successful.
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It should be noted again that all solutions of partial differential equations cannot be 
found by separation of variables; in fact, it is only a very special set of boundary condi-
tions that allows us to separate the variables. For example, Eq. 6.6.20 would obviously 
not be useful in satisfying the boundary condition T(L, t) = 20t. Separation of variables 
would then be futile. Numerical methods could be used to find a solution, or other ana-
lytical techniques not covered in this book would be necessary.

Example 6.8

A long copper rod with insulated lateral surfaces has its left end maintained at a 
temperature of 0°C and its right end, at x = 2 m, maintained at 100°C. Determine the 
temperature as a function of x and t if the initial condition is given by

T x f x
x x

x
( , ) ( )0

100 0 1
100 1 2

= =
< <
< <





The thermal diffusivity for copper is k = 1.14 × 10 – 4 m 2/s.

Solution
We again assume the variables separate as

T x t t X x( , ) ( ) ( )= θ

with the resulting equation, 

1
k

X
X

′
= =

θ
θ

λ
″

In this problem the eigenvalue λ = 0 will play an important role. The solution for 
λ = 0 is

θ ( ) , ( )t C X x A x B= = +1 1 1

resulting in

T x t C A x B( , ) ( )= +1 1 1

To satisfy the two end conditions T(0, t) = 0 and T(2, t) = 100, it is necessary to require 
B1 = 0 and A1C1 = 50. Then

	 T x t x( , ) = 50 � (1)

This solution is, of course, independent of time, but we will find it quite useful.
Now, we return to the case that allows for exponential decay of temperature, 

namely λ = – β 2. For this eigenvalue see Eq. 6.6.17 the solution is

	 T x t Ae B x C xkt( , ) sin cos= +[ ]−β β β2 � (2)

We can superimpose the above two solutions, since Eq. 6.6.2 is linear, and obtain the 
more general solution

T x t x Ae B x C xkt( , ) sin cos= + +[ ]−50 2β β β
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Now let us satisfy the boundary conditions. The left-end condition T(0, t) = 0 de-
mands that C = 0. The right-end condition demands that

100 100 2= + ⋅ −A Be Lktβ βsin

This requires that sin βL = 0, which occurs whenever

β π β πL n n L n= = =or / , , , ,1 2 3 �

The general solution is then

T x t x D e
n x

n
n kt

n

( , ) sin= + −

=

∞

∑50
2

2 2 4

1

π π/

using L = 2. Note that this satisfies the describing equation (6.6.2) and the two bound-
ary conditions. Finally, it must satisfy the initial condition

f x x D
n x

n

n

( ) sin= +
=

∞

∑50
2

1

π

We see that if the function [  f (x) – 50x] can be expanded in a Fourier sine series, then 
the solution will be complete. The Fourier coefficients are

	 D
L

f x x
n x
L

dxn

L

= −[ ]∫2 50
0

( ) sin
π

	 = − + −∫ ∫2
2

100 50
2

2
2

100 50
20

1

1

2

( )sin ( )sinx x
n x

dx x
n x

dx
π π

	 = − +





−50
2

2
4

2
200

22 2
0

1 2

1

x
n

n x
n

n x
n

n x
π

π
π

π
π

π
cos sin cos

		        − − +





50
2

2
4

22 2
1

2x
n

n x
n

n x
π

π
π

π
cos sin

	 =
400

22 2n
n

π
π

sin

The solution is, using k = 1.14 × 10 –4 m 2/s for copper, 

T x t x
n

n
e

n x

n

n t( , )
.
sin sin.= +

=

∞

− ×∑ −50
40 5

2 2
1

2
2 81 10 4 2π π

Note that the time t is measured in seconds.

6.6.2 A  Long, Totally Insulated Rod

The lateral sides of the long rod are again insulated so that heat transfer occurs only 
in the x direction along the rod. The temperature in the rod is described by the one-
dimensional heat equation

	
∂
∂

=
∂
∂

T
t

k
T
x

2

2 � (6.6.25)
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For this problem, we have an initial temperature distribution given by

	 T x f x( , ) ( )0 = � (6.6.26)

Since the rod is totally insulated, the heat flux across the end faces is zero. This condition 
gives, with the use of Eq. 6.5.1, 

	
∂
∂

=
∂
∂

=
T
x

t
T
x

L t( , ) , ( , )0 0 0 � (6.6.27)

We assume that the variables separate, 

	 T x t t X x( , ) ( ) ( )= θ � (6.6.28)

Substitute into Eq. 6.6.25, to obtain

	
′
= = −

θ
θ

β
k

X
X
″ 2 � (6.6.29)

where -β 2 is a negative real number. Equation 6.6.29 gives

	 ′ = −θ β θ2k � (6.6.30)

and

	 X X″ + =β 2 0 � (6.6.31)

The equations have solutions in the form

	 θ β( )t Ae kt= − 2
� (6.6.32)

and

	 X x B x C x( ) sin cos= +β β � (6.6.33)

The first boundary condition of (6.6.27) implies that B = 0, and the second requires that

	
∂
∂

= − =
X
x

L C L( ) sinβ β 0 � (6.6.34)

This can be satisfied if we set

	 sin βL = 0 � (6.6.35)

hence, the eigenvalues are

	 β
π

= =
n
L

n, , , ,0 1 2 � � (6.6.36)

Thus, the independent solutions are of the form

	 T x t a e
n x
Ln n

n kt L( , ) cos/= − 2 2 2π π
� (6.6.37)
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where the constant an replaces AC. The general solution, which hopefully will satisfy the 
remaining initial condition, is then

	 T x t a e
n x
Ln

n k L t

n

( , ) cos( / )= −

=

∞

∑ 2 2 2

0

π π
� (6.6.38)

Note that we retain the β = 0 eigenvalue in the series.
The initial condition is given by Eq. 6.6.26. It demands that

	 f x a
n x
Ln

n

( ) cos=
=

∞

∑ π

0

� (6.6.39)

Using trigonometric identities we can show that

	 cos cos
n x
L

m x
L

dx

m n

L m n

L m n

L π π
=








≠
= ≠
= =

∫0
0

2 0
0

/ � (6.6.40)

Multiply both sides of Eq. 6.6.39 by cos mπx/L and integrate from 0 to L. We then have*

	
a

L
f x dx a

L
f x

n x
L

dxn

L L

0
0 0

1 2
= =∫ ∫( ) , ( )cos

π
� (6.6.41)

The solution is finally

	 T x t a e
n x
Ln

n k L t

n

( , ) cos( / )= −

=

∞

∑ 2 2 2

0

π π
� (6.6.42)

Thus, the temperature distribution can be determined provided that f (x) can be 
expanded in a Fourier cosine series.

*Note that it is often the practice to define a0 as a L f x dx
L

0 0
2= ∫( ) ( )/ and then to write the solution as 

T x t a a e n x Ln
n kt L

n

( , ) cos( )./ / /= + −

=

∞

∑0
1

2 2 2 2π π  This was done in Section 1.10. Both methods are, of course, 

equivalent.

Example 6.9

A long, laterally insulated stainless steel rod has heat generation occurring within the 
rod at the constant rate of 4140 W/m 3 · s. The right end is insulated and the left end is 
maintained at 0°C. Find an expression for T(x, t) if the initial temperature distribution is

T x f x
x x

x x
( , ) ( )0

100 0 1
200 100 1 2

= =
< <

− < <




for the 2-m-long, 0.1-m-diameter rod. Use the specific heat C = 460 J/kg · °C,  
ρ = 7820 kg/m 3, and k = 3.86 × 10 -6 m 2/s.
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Solution
To find the appropriate describing equation, we must account for the heat generated 
in the infinitesimal element of Fig. 6.11. To Eq. 6.5.7 we would add a heat-generation 
term, 

ϕ(x, y, z, t) Δ x Δy Δ z Δt

where ϕ(x, y, z, t) is the amount of heat generated per volume per unit time. The 
one-dimensional heat equation would then take the form

∂
∂

=
∂
∂

+
T
t

k
T
x C

2

2

φ
ρ

For the present example the describing equation is

∂
∂

=
∂
∂

+ ⋅
T
t

k
T
x

2

2

4140
7890 460

This nonhomogeneous, partial differential equation is solved by finding a particular 
solution and adding it to the solution of the homogeneous equation

∂
∂

=
∂
∂

T
t

k
T
x

2

2

The solution of the homogeneous equation is (see Eqs. 6.6.32 and 6.6.33)

T x t Ae B x C xkt( , ) sin cos= +[ ]−β β β2

The left-end boundary condition is T(0, t) = 0, resulting in C = 0. The insulated right 
end requires that ∂T/∂x (L, t) = 0. This results in

cosβL = 0

Thus, the quantity βL must equal π/2, 3π/2, 5π/2, …. This is accomplished by using

β
π

=
−

=
( )

, , , ,
2 1

2
1 2 3

n
L

n �

The homogeneous solution is, then, using k = 3.86 × 10 -6 and L = 2, 

T x t D e
n

xn
n t

n

( , ) sin. ( )=
−






− × −

=

∞
−∑ 2 38 10 2 1

1

6 2 2 1
4

π

To find the particular solution, we note that the generation of heat is independent 
of time. Since the homogeneous solution decays to zero with time, we anticipate that 
the heat-generation term will lead to a steady-state temperature distribution. Thus, 
we assume the particular solution to be independent of time, that is, 

T x t g xp ( , ) ( )=

Substitute this into the describing equation, to obtain

0 3 86 10 1 15 106 3= × + ×− −. .g″
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The solution to this ordinary differential equation is

g x x c x c( ) = − + +149 2
1 2

This solution must also satisfy the boundary condition at the left end, yielding c 2 = 0 
and the boundary condition at the right end (g’ = 0), giving c 1 = 596. The complete 
solution, which must now satisfy the initial condition, is

T x t x x D e
n

xn
n t

n

( , ) sin. ( )= − + +
−






− × −

=

−149 596
2 1

4
2 2 38 10 2 16 2 π

11

∞

∑
To find the unknown coefficients Dn we use the initial condition, which states that

f x x x D
n

xn

n

( ) sin= − + +
−








=

∞

∑149 596
2 1

4
2

1

π

The coefficients are then

D f x x x
n

x dxn = + −
−






∫22 149 596

2 1
4

2

0

2

[ ( ) ]sin π

	 = −
−






∫ ( )sin149 496

2 1
4

2

0

1

x x
n

x dxπ

		  + − +
−






∫ ( )sin149 696 200

2 1
4

2

1

2

x x
n

x dxπ

The integrals can be integrated by parts providing a complete solution.

6.6.3 �T wo-Dimensional Heat Conduction in a Long, Rectangular Bar

A long, rectangular bar is bounded by the planes x = 0, x = a, y = 0, and, y = b. These faces 
are kept at T = 0°C, as shown by the cross section in Fig. 6.14. The bar is heated so that 

x

y

(a, 0, 0)

(0, b, 0)

T = 0

T = 0

T = 0T = 0

Figure 6.14  Cross section of a rectangular bar.
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the variation in the z direction may be neglected. Thus, the variation of temperature in 
the bar is described by

	
∂
∂

=
∂
∂

+
∂
∂











T
t

k
T
x

T
y

2

2

2

2 � (6.6.43)

The initial temperature distribution in the bar is given by

	 T x y f x y( , , ) ( , )0 = � (6.6.44)

We want to find an expression for T(x, y, t). Hence, we assume that

	 T x y t X x Y y t( , , ) ( ) ( ) ( )= θ � (6.6.45)

After Eq. 6.6.45 is substituted into Eq. 6.6.43, we find that

	 XY k X Y XY′ = +θ θ θ( )″ ″ � (6.6.46)

Equation 6.6.46 may be rewritten as

	
X
X k

Y
Y

″ ″
= −

′θ
θ

� (6.6.47)

Since the left-hand side of Eq. 6.6.47 is a function of x only and the right side is a function 
of t and y, we may assume that both sides equal the constant value -λ. (With experience 
we now anticipate the minus sign.) Therefore, we have

	 X X″ + =λ 0 � (6.6.48)

and

	
Y
Y k
″
= +

′θ
θ

λ � (6.6.49)

We use the same argument on Eq. 6.6.49 and set it equal to a constant -μ. That is, 

	
Y
Y k
″
= + = −

′θ
θ

λ µ � (6.6.50)

This yields the two differential equations

	 Y Y″ + =µ 0 � (6.6.51)

and

	 ′ + + =θ λ µ θ( )k 0 � (6.6.52)

The boundary conditions on X(x) are

	 X X a( ) , ( )0 0 0= = � (6.6.53)

since the temperature is zero at x = 0 and x = a. Consequently, the solution of Eq. 6.6.48, 

	 X x A x B x( ) sin cos= +λ λ � (6.6.54)
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reduces to

	 X x A
n x
a

( ) sin=
π

� (6.6.55)

where we have used

	 λ
π

= =
n

a
n

2 2

2
1 2 3, , , ,� � (6.6.56)

Similarly, the solution to Eq. 6.6.51 reduces to

	 Y y C
m y
b

( ) sin=
π

� (6.6.57)

where we have employed

	 µ
π

= =
m
b

m
2 2

2
1 2 3, , , � � (6.6.58)

With the use of Eqs. 6.6.56 and 6.6.58 we find the solution of Eq. 6.6.52 to be

	 θ π( ) ( / / )t De k n a m b t= − +2 2 2 2 2

� (6.6.59)

Equations 6.6.55, 6.6.57 and 6.6.59 may be combined to give

	 T x y t A e
n x
a

m y
bmn mn

k n a m b t( , , ) sin sin( / / )= − +π π π2 2 2 2 2

� (6.6.60)

where the constant amn replaces ACD. The most general solution is then obtained by 
superposition, namely, 

	 T x y t Tmn
nm

( , , ) =
=

∞

=

∞

∑∑
11

� (6.6.61)

and we have

	 T x y t a e
n x
a

m y
bmn

k n a m b t

nm

( , , ) sin sin( / )= − +

=

∞

=

∞

∑∑ π π π2 2 2 2 2

11

/ � (6.6.62)

This is a solution if coefficients amn can be determined so that

	 T x y f x y a
n x
a

m y
b

n

mn

m

( , , ) ( , ) sin sin0
11

= =












∑∑

=

∞

=

∞
π π

� (6.6.63)

We make the grouping indicated by the brackets in Eq. 6.6.63. Thus, for a given x in the 
range (0, a), we have a Fourier series in y. [For a given x, f (x, y) is a function of y only.] 
Therefore, the term in the brackets is the constant bn in the Fourier sine series. Hence, 

a
n x
a b

f x y
m y
b

dymn

n

b

=

∞

∑ ∫=
1 0

2
sin ( , )sin

π π

	   = F xm( ) � (6.6.64)
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The right-hand side of Eq. 6.6.64 is a series of functions of x, one for each m = 1, 2, 3, …. 
Thus, Eq. 6.6.64 is a Fourier sine series for Fm(x). Therefore, we have

	 a
a

F x
n x
a

dxmn m

a

= ∫2 0

( )sin
π

� (6.6.65)

Substitution of Eq. 6.6.64 into Eq. 6.6.65 yields

	 a
ab

f x y
m y
b

n x
a

dydxmn

ba

= ∫∫4 00

( , )sin sin
π π

� (6.6.66)

The solution of our problem is Eq. 6.6.62 with amn given by Eq. 6.6.66.
This problem is an example of an extension of the ideas that we have developed, to 

include three independent variables; the two-dimensional Fourier series representation 
was also utilized.

We have studied the major ideas used in the application of separation of variables to 
problems in rectangular coordinates; to find the solution it was, in general, necessary to 
expand the initial condition in a Fourier series. For other problems that are more conve-
niently formulated in cylindrical coordinates, we would find Bessel functions taking the 
place of Fourier series, and using spherical coordinates, Legendre polynomials would 
appear. Sections 6.7 and 6.8 will present the solutions to Laplace’s equation in spherical 
coordinates and cylindrical coordinates, respectively.

Example 6.10

The edges of a thin plate are held at the temperatures shown in the sketch of Fig. 6.15. 
Determine the steady-state temperature distribution in the plate. Assume the large 
plate surfaces to be insulated.

x

y

1

2

0°C

0°C

0°C 50 sin   y°Cπ

Figure 6.15

Solution
The describing equation is the heat equation

∂
∂

=
∂
∂

+
∂
∂

+
∂
∂











T
t

k
T
x

T
y

T
z

2

2

2

2

2

2
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For the steady-state situation there is no variation of temperature with time; that is, 
∂T/∂t = 0. For a thin plate with insulated surfaces we have ∂ 2T/∂z2 = 0. Thus, 

∂
∂

+
∂
∂

=
2

2

2

2
0

T
x

T
y

This is Laplace’s equation. Let us assume that the variables separate; that is, 

T x y X x Y y( , ) ( ) ( )=

Then substitute into the describing equation to obtain

X
X

Y
Y

″ ″
= − = β 2

where we have chosen the separation constant to be positive to allow for a sinusoidal 
variation* with y. The ordinary differential equations that result are

X X″ − =β 2 0

Y Y″ + =β 2 0

The solutions are

	 X x Ae Bex x( ) = + −β β

	 Y y C y D y( ) sin cos= +β β

The solution for T(x, y) is then

T x y Ae Be C y D yx x( , ) ( )( sin cos )= + +−β β β β

Using T(0, y) = 0, T(x, 0) = 0, and T(x, 1) = 0 gives

	 0 = +A B

	 0 = D
	 0 = sin β

The final boundary condition is

T y y Ae Be C y( , ) sin ( ) sin2 50 2 2= = + −π ββ β

From this condition we have
	 β π=

	 50 2 2= + −C Ae Be( )β β

From the equations above we can solve for the constants. We have 

B A AC
e e

= − =
−

=
−

, .
50

0 0934
2 2π π

Finally, the expression for T(x, y) is

T x y e e yx x( , ) . ( )sin= − −0 0934 π π π

Note that the expression above for the temperature is independent of the material 
properties; it is a steady-state solution.

*If the right-hand edge were held at a constant temperature we would also choose the separation constant 
so that cos βy and sin βy appear. This would allow a Fourier series to satisfy the edge condition.
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6.7 �El ectric Potential About 
a Spherical Surface

Consider that a spherical surface is maintained at an electrical potential V. The potential 
depends only on ϕ and is given by the function f (ϕ). The equation that describes the po-
tential in the region on either side of the spherical surface is Laplace’s equation (6.5.15), 
written in spherical coordinates (shown in Fig. 6.12) as

	
∂
∂

∂
∂







 +

∂
∂

∂
∂









 =r

r
V
r

V2 1
0

sin
sin

φ φ
φ

φ
� (6.7.1)

Obviously, one boundary condition requires that

	 V r f( , ) ( )0 φ φ= � (6.7.2)

The fact that a potential exists on the spherical surface of finite radius should not lead to 
a potential at infinite distances from the sphere; hence, we set

	 V( , )∞ =φ 0 � (6.7.3)

We follow the usual procedure of separating variables; that is, assume that

	 V r R r( , ) ( ) ( )φ φ= Φ � (6.7.4)

This leads to the equations

	
1 12

R
d
dr

r
dR
dr

d
d







 = − =

Φ
Φ

sin
( sin )

θ φ
φ µ � (6.7.5)

which can be written as, letting cos ϕ = x, so that F = F(x), 

	 r R rR R2 2 0″ + − =′ µ

	 ( )1 2 02− − + =x xΦ Φ Φ″ µ
� (6.7.6)

The first of these is recognized as Cauchy’s equation (see Section 1.11) and has the solution

	 R r c r c r( ) / / / /= +− + + − − +
1

1 2 1 4
2

1 2 1 4µ µ � (6.7.7)

This is put in better form by letting − + + =1
2

1
4µ n.  Then

	 R r c r
c
r

n
n

( ) = +
+1
2
1 � (6.7.8)

The equation for ϕ becomes Legendre’s equation (see Section 2.3), 

	 ( ) ( )1 2 1 02− − + + =′x x n nΦ Φ Φ″ � (6.7.9)

where n must be a positive integer for a proper solution to exist. The general solution to 
this equation is

	 Φ( ) ( ) ( )x c P x c Q xn n= +3 4 � (6.7.10)
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Since Qn(x) → ∞ as x → 1 (see Eq. 2.3.19), we set c4 = 0. This results in the following 
solution for V(r, x):

	 V r x V r x A r P x B r P xn
n

n
n

n n
n

n
n

( , ) ( , ) ( ) ( )[ ]( )= = +
=

∞
− +

=

∞

∑ ∑
0

1

0
� (6.7.11)

Let us first consider points inside the spherical surface. The constants Bn = 0 if a 
finite potential is to exist at r = 0. We are left with

	 V r x A r P xn
n

n
n

( , ) ( )=
=

∞

∑
0

� (6.7.12)

This equation must satisfy the boundary condition

	 V r x f x A r P xn
n

n
n

( , ) ( ) ( )0 0
0

= =
=

∞

∑ � (6.7.13)

The unknown coefficients An are found by using the property

	 P x P x dx
m n

n
m nm n( ) ( ) =

≠

+
=





−∫
0

2
2 11

1

� (6.7.14)

Multiply both sides of Eq. 6.7.12 by Pm(x)dx and integrate from –1 to 1. This gives

	 A
n
r

f x P x dxn n n=
+

−∫
2 1
2 0 1

1

( ) ( ) � (6.7.15)

For a prescribed f (ϕ), using cos ϕ = x, Eq. 6.7.12 provides us with the solution for interior 
points with the constants An given by Eq. 6.7.15.

For exterior points we require that An = 0 in Eq. 6.7.11, so the solution is bounded as 
x → ∞. This leaves the solution

	 V r x B r P xn
n

n
n

( , ) ( )( )= − +

=

∞

∑ 1

0
� (6.7.16)

This equation must also satisfy the boundary condition

	 f x B r P xn
n

n
n

( ) ( )( )= − +

=

∞

∑ 0
1

0
� (6.7.17)

Using the property (6.7.14), the Bn’s are given by

	 B
n

r f x P x dxn
n

n=
+ +

−∫
2 1

2 0
1

1

1

( ) ( ) � (6.7.18)

If f (x) is a constant we must evaluate P x dxn( ) .
−∫ 1

1
 Using Eq. 2.3.15 we can show that

	 P x dx P x dx nn01

1

1

1
2 0 1 2 3( ) , ( ) , , , ,= = =

− −∫ ∫ � � (6.7.19)

An example will illustrate the application of this presentation for a specific f (x).
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Example 6.11

Find the electric potential inside a spherical surface of radius r0 if the hemispherical 
surface when π > ϕ > π/ 2 is maintained at a constant potential V0 and the hemispher-
ical surface when π / 2 > ϕ > 0 is maintained at zero potential.

Solution
Inside the sphere of radius r0, the solution is

V r x A r P xn
n

n
n

( , ) ( )=
=

∞

∑
0

where x = cos ϕ. The coefficients An are given by Eq. 6.7.15, 

A
n
r

f x P x dx

n
r

V P x dx P x dx

n n n

n n n
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02 1
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=
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−

n
r

V P x dx
n n( )

where we have used V = V0 for π > ϕ > π / 2 and V = 0 for π / 2 > ϕ > 0. Several An’s can 
be evaluated, to give (see Eq. 2.3.15)

A
V

A
V
r

A A
V
r

A A
V
r0

0
1

0

0
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0
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= = − = = = = −, , , , ,

This provides us with the solution, letting cos ϕ = x, 
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
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

�

where the Legendre polynomials are given by Eqs. 2.3.15. Note that the expression 
above could be used to give a reasonable approximation to the temperature in a solid 
sphere if the hemispheres are maintained at T0 and zero degrees, respectively, since 
Laplace’s equation also describes the temperature distribution in a solid body.

6.8 H eat  Transfer in a Cylindrical Body

Boundary-value problems involving a boundary condition applied to a circular 
cylindrical surface are encountered quite often in physical situations. The solution 
of such problems invariably involve Bessel functions, which were introduced in 
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Section 2.5. We shall use the problem of finding the steady-state temperature distribu-
tion in the cylinder shown in Fig. 6.16 as an example. Other exercises are included in 
the Problems.

L

x

y

z

T = 0

T = 0
(end)

T = f (r)

r0

Figure 6.16  Circular cylinder with boundary conditions.

The partial differential equation describing the phenomenon illustrated in Fig. 6.16 is

	
∂
∂

= ∇
T
t

k T2 � (6.8.1)

where we have assumed constant material properties. For a steady-state situation using 
cylindrical coordinates (see Eq. 6.5.14), this becomes

	
∂
∂

+
∂
∂

+
∂
∂

=
2

2

2

2

1
0

T
r r

T
r

T
z

� (6.8.2)

where, considering the boundary conditions shown in the figure, we have assumed the 
temperature to be independent of θ. We assume a separated solution of the form

	 T r z R r Z z( , ) ( ) ( )= � (6.8.3)

which leads to the equations

	
1 1 2

R
R

r
R

Z
Z

″
″

+





 = − = −′ µ � (6.8.4)

where a negative sign is chosen on the separation constant since we anticipate an expo-
nential variation with z. We are thus confronted with solving the two ordinary differen-
tial equations

	 R R R″ + + =′1
2

02µ � (6.8.5)

	 Z Z″ − =µ 2 0 � (6.8.6)

The solution to Eq. 6.8.6 is simply

	 Z z c e c ez z( ) = + −
1 2

µ µ � (6.8.7)

for μ > 0; for μ = 0, it is

	 Z z c z c( ) = +5 6 � (6.8.8)
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This solution may or may not be of use. We note that Eq. 6.8.5 is close to being Bessel’s 
equation (2.5.1) with λ = 0. By substituting x = μr, Eq. 6.8.5 becomes

	 x R xR x R2 2 0″ + + =′ � (6.8.9)

which is Bessel’s equation with λ = 0. It possesses the general solution

	 R x c J x c Y x( ) ( ) ( )= +3 0 4 0 � (6.8.10)

where J0(x) and Y0(x) are Bessel functions of the first and second kind, respectively. We 
know (see Fig. 2.5) that Y0(x) is singular at x = 0. (This corresponds to r = 0.) Hence, we 
require that c4 = 0, and the solution to our problem is

	 T r z J r Ae Bez z( , ) ( )[ ]= + −
0 µ µ µ � (6.8.11)

The temperature on the surface at z = 0 is maintained at zero degrees. This gives B = –A 
from the equation above. The temperature at r = r0 is also maintained at zero degrees; 
that is, 

	 T r z AJ r e ez z( , ) ( )[ ]0 0 00= = − −µ µ µ � (6.8.12)

The Bessel function J0(μr0) has infinitely many roots that allow the equation above to be 
satisfied; none of these roots equal zero; thus the μ = 0 eigenvalue is not of use. Let the 
nth root be designated μ n. Four such roots are shown in Fig. 2.4 and are given numeri-
cally in the Appendix.

Returning to Eq. 6.8.11, our solution is now

	 T r z T r z J r A e en
n

n n
z z

n

n n( , ) ( , ) ( ) [ ]= = −
=

∞
−

=

∞

∑ ∑
1

0
1

µ µ µ � (6.8.13)

This solution should allow the final end condition to be satisfied. It is

	 T r L f r A J r e en n
L L

n

n n( , ) ( ) ( )[ ]= = − −

=

∞

∑ 0
1

µ µ µ � (6.8.14)

We must now use the property that

	 xJ x J x dx
n m
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2

1
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0

2
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 +

� (6.8.15)

where the μn are the roots of the equation Jj(μr0) = 0. This permits the coefficients An to 
be determined from, using j = 0, 

	 A
e e
r J r

rf r J r drn

L L

n
n

r
n n

=
− − −

∫2 1

0
2

1
2

0
0

0

0( )
( )

( ) ( )
µ µ

µ
µ � (6.8.16)

This completes the solution. For a specified f (r) for the temperature on the right end, 
Eq. 6.8.13 gives the temperature at any interior point if the coefficients are evaluated 
using Eq. 6.8.16. This process will be illustrated with an example.



Sec. 6.8 / Heat  Transfer in a Cylindrical Body    291

Example 6.12

Determine the steady-state temperature distribution in a 2-unit-long, 4-unit-diameter 
circular cylinder with one end maintained at 0°C, the other end at 100r °C, and the 
lateral surface insulated.

Solution
Following the solution procedure outlined in the previous section, the solution is

T r z J r Ae Bez z( , ) ( )[ ]= + −
0 µ µ µ

The temperature at the base where z = 0 is zero. Thus, B = –A and

T r z AJ r e ez z( , ) ( )[ ]= + −
0 µ µ µ

On the lateral surface where r = 2, the heat transfer is zero, requiring that

∂
∂

= = ( ) −′ −T
r

z AJ e ez z( , ) [ ]2 0 20 µ µ µ

or

′ =J0 2 0( )µ

There are infinitely many values of μ that provide this condition, the first of which 
is μ = 0. Let the nth one be μn, the eigenvalue. The solution corresponding to this 
eigenvalue is

T r z A J r e en n n
z zn n( , ) ( )[ ]= − −

0 µ µ µ

for μn > 0; for μ1 = 0, the solution is, using Eq. 6.8.8, 

T r z A z1 1( , ) =

The general solution is then found by superimposing all the individual solutions, 
resulting in

T r z T r z A z A J r e e
n

n
n

n n
z zn n( , ) ( , ) ( )[ ]= = + −

=

∞

=

∞
−∑ ∑

1
1

2
0 µ µ µ

The remaining boundary condition is that the end at z = 2 is maintained at 100r °C, 
that is, 

T r r A A J r e e
n

n n n n( , ) ( )[ ]2 100 2 1
2

0
2 2= = + −

=

∞
−∑ µ µ µ

We must be careful, however, and not assume that the A n in this series are given by 
Eq. 6.8.16; they are not, since the roots μ n are not to the equation J0(μr0) = 0, but to 
J′0(μr0) = 0. The property analogous to Eq. 6.8.15 takes the form

x J x J x dx
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whenever μn are the roots of J′j(μr0) = 0. The coefficients An are then given by, using 
j = 0, 

A
e e
r J r

rf r J r drn
n

n

r
n n

=
− − −

∫2 2 2 1

0
2

0
2

0
0
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µ
µ

where f (r) = 100r. For the first root, μ1 = 0, the coefficient is

A
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rf r dr
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Some of the coefficients are, using μ 1 = 0, μ 2 = 1.916, μ 3 = 3.508
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The integrals above could be easily evaluated by use of a computer integration 
scheme. Such a scheme will be presented in Chapter 8. The solution is then

T r z z A J r e e

A J r

z z( , ) ( . )[ ]

( . )[

. .= + −

+

−400
3

1 916

3 508

2 0
1 916 1 916

3 0 ee ez z3 508 3 508. . ]− +− �

6.9 G ravitational Potential

There are a number of physical situations that are modeled by Laplace’s equation. We 
shall choose the force of attraction of particles to demonstrate its derivation. The law of 
gravitation states that a lumped mass m located at the point (X, Y, Z) attracts a unit mass 
located at the point (x, y, z) (see Fig. 6.17), with a force directed along the line connecting 
the two points with magnitude given by

	 F
km
r

= −
2 � (6.9.1)
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where K is a positive constant and the negative sign indicates that the force acts toward 
the mass m. The distance between the two points is provided by the expression

	 r x X y Y z Z= − + − + −( ) ( ) ( )2 2 2 � (6.9.2)

positive being from Q to P.

P(x, y, z)

F
r

z

m
Q (X, Y, Z)

x

y

Figure 6.17  Gravitational attraction.

A gravitational potential ϕ can be defined as

	 φ =
km
r

� (6.9.3)

This allows the force F acting on a unit mass at P due to a mass at Q to be related to ϕ 
by the equation

	 F
r

=
∂
∂
φ

		  = −
km
r 2

� (6.9.4)

Now, let the mass m be fixed in space and let the unit mass move to various locations 
P(x, y, z). The potential function ϕ is then a function of x, y, and z. If we let P move along 
a direction parallel to the x axis, then

	

∂
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=
∂
∂

∂
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= − − − + − + −

= −

−

φ φ
x r
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x
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x X
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F Fx

2

−

= =cosα � (6.9.5)

where α is the angle between r and the x axis, and Fx is the projection of F in the x 
direction. Similarly, for the other two directions, 

	 F
y

F
zy z=

∂
∂

=
∂
∂

φ φ
, � (6.9.6)
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The discussion above is now extended to include a distributed mass throughout a vol-
ume V. The potential dϕ due to an incremental mass dm is written, following Eq. 6.9.3, as

	 d
k dV

r
φ

ρ
= � (6.9.7)

where ρ is the density, i.e., mass per unit volume. Letting dV = dx dy dz, we have

	 φ
ρ

=
− + − + −∫∫∫k

dx dy dz
x X y Y z Z

V
[( ) ( ) ( ) ] /2 2 2 1 2 � (6.9.8)

This is differentiated to give the force components. For example, Fx is given by

	 F
x

k
x X
r r

dx dy dzx

V

=
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= −
−∫∫∫φ ρ

2 � (6.9.9)

This represents the x component of the total force exerted on a unit mass located outside 
the volume V at P(x, y, z) due to the distributed mass in the volume V.

If we now differentiate Eq. 6.9.9 again with respect to x, we find that
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We can also show that
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(6.9.11)

The sum of the bracketed terms inside the three integrals above is observed to be iden-
tically zero, using Eq. 6.9.2. Hence, Laplace’s equation results, 
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+
∂
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=
2

2

2

2

2

2
0

φ φ φ
x y z

� (6.9.12)

or, in our shorthand notation, 

	 ∇ =2 0φ � (6.9.l3)

Laplace’s equation is also satisfied by a magnetic potential function and an electric 
potential function at points not occupied by magnetic poles or electric charges. We have 
already observed in Section 6.5 that the steady-state heat-conduction problem leads to 
Laplace’s equation. Finally, the flow of an incompressible fluid with negligible viscous 
effects also leads to Laplace’s equation.

We have now derived several partial differential equations that describe a variety of 
physical phenomena. This modeling process is quite difficult to perform on a situation 
that is new and different. Hopefully, the confidence gained in deriving the equations of 
this chapter and in finding solutions will allow the reader to derive and solve other par-
tial differential equations arising in the multitude of application areas.
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Problems

	 6.1	 Classify each of the following equations.

	 (a)	
∂
∂

+
∂
∂ ∂

+
∂
∂

=
2

2

2 2

2
0

u
x

u
x y

u
y
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∂
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=x
u

x
y

u
x y

x
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y

	 (c)	
∂
∂

+ +
∂
∂









∂
∂

+
∂
∂

=
2

2

2 2

2
1

u
x

u
x

u
y

k
u
y

G x y( , )

	 (d)	
∂
∂







 =

u
x

u x y
2

( , )

	 (e)	
du
dx

u x= ( )

	 6.2	 Verify each of the following statements.
	 (a)	� u(x, y) = ex sin y is a solution of Laplace’s 

equation, ∇ 2u = 0.
	 (b)	� T(x, t) = e-kt sin x is a solution of the para-

bolic heat equation, ∂ ∂ = ∂ ∂T t k T x/ /2 2.
	 (c)	� u(x, t) = sin ω x sin ω at is a solution of the 

wave equation, ∂ ∂ = ∂ ∂2 2 2 2 2u t a u x/ / .
	 6.3	 In arriving at the equation describing the 

motion of a vibrating string, the weight 
was assumed to be negligible. Include the 
weight of the string in the derivation and 
determine the describing equation. Classify 
the equation.

	 6.4	 Derive the describing equation for a 
stretched string subject to gravity loading 
and viscous drag. Viscous drag per unit 
length of string may be expressed by c(∂u/∂t); 
the drag force is proportional to the velocity. 
Classify the resulting equation.

	 6.5	 Derive the torsional vibration equation for 
a circular shaft by applying the basic law 
which states that Iα = ∑ T, where α is the 
angular acceleration, T is the torque  
(T = GJθ/L, where θ is the angle of twist of the 
shaft of length L and J and G are constants), 
and I is the mass moment of inertia  
(I = k2m, where the radius of gyration 

k J A= /  and m is the mass of the shaft). 
Choose an infinitesimal element of the shaft 
of length Δ x, sum the torques acting on it, 

and, using ρ as the mass density, show that 
the wave equation results, 

∂
∂

=
∂
∂

2

2

2

2

θ
ρ

θ
t

G
x

	 6.6	 An unloaded beam will undergo vibrations 
when subjected to an initial disturbance. 
Derive the appropriate partial differential 
equation which describes the motion 
using Newton’s second law applied to an 
infinitesimal section of the beam. Assume the 
inertial force to be a distributed load acting 
on the beam. A uniformly distributed load w 
is related to the vertical deflection y(x, t) of 
the beam by w = –EI ∂ 4y/∂x 4, where E and I 
are constants.

	 6.7	 For the special situation in which LG = RC, 
show that the transmission-line equation 
6.2.36 reduces to the wave equation

∂
∂

=
∂
∂

2

2
2

2

2

u
t

a
u

x
		  if we let

i x t e u x tabt( , ) ( , )= −

		  where a2 = 1/LC and b2 = RG.

	 6.8	 A tightly stretched string, with its ends fixed 
at the points (0, 0) and (2L, 0), hangs at rest 
under its own weight. The y axis points 
vertically upward. Find the describing 
equation for the position u(x) of the string. Is 
the following expression a solution?

u x
g
a

x L
gL
a

( ) ( )= − −
2 22

2
2

2

		  where a2 = P/m. If so, show that the depth 
of the vertex of the parabola (i.e., the lowest 
point) varies directly with m (mass per unit 
length) and L2, and inversely with P, the 
tension.

	 6.9	 A very long string is given an initial 
displacement ϕ (x) and an initial velocity θ (x). 
Determine the general form of the solution 
for u(x, t). Compare with the solution (6.3.18) 
and that of Example 6.1.
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	6.10	 An infinite string with a mass of 0.03 kg/m 
is stretched with a force of 300 N. It is 
subjected to an initial displacement of cos x 
for –π/2 < x < π/2 and zero for all other x and 
released from rest. Determine the subsequent 
displacement of the string and sketch the 
solution for t = 0.1 s and 0.01 s.

	6.11	 Express the solution (6.4.36) in terms of the 
solution (6.3.10). What are f and g?

	6.12	 Determine the general solution for the 
wave equation using separation of variables 
assuming that the separation constant is 
zero. Show that this solution cannot satisfy 
the boundary and/or initial conditions.

	6.13	 Verify that

u x t b
at
L

n x
Ln( , ) cos sin=

π π

		  is a solution to Eq. 6.4.1, and the conditions 
6.4.2 through 6.4.4.

	6.14	 Find the constants A, B, C, and D in  
Eqs. 6.4.23 and 6.4.24 in terms of the 
constants c1, c2, c3, and c4 in Eqs. 6.4.20  
and 6.4.21.

	6.15	 Determine the relationship of the 
fundamental frequency of a vibrating string 
to the mass per unit length, the length of the 
string, and the tension in the string.

	6.16	 If, for a vibrating wire, the original 
displacement of the 2-m-long stationary wire 
is given by a) 0.1 sin xπ/2, b) 0.1 sin 3π/2, 
and c) 0.1(sin πx/2 – sin 3πx/2), find the 
displacement function u(x, t). Both ends are 
fixed, P = 50 N, and the mass per unit length 
is 0.01 kg/m. With what frequency does 
the wire oscillate? Write the eigenvalue and 
eigenfunction for part (a).

	6.17	 The initial displacement in a 2-m-long string 
is given by 0.2 sin πx and released from rest. 
Calculate the maximum velocity in the string 
and state its location.

	6.18	 A string π m long is stretched until the wave 
speed is 40 m/s. It is given an initial velocity 
of 4 sin x from its equilibrium position. 
Determine the maximum displacement and 
state its location and when it occurs.

	6.19	 A string 4 m long is stretched, resulting 
in a wave speed of 60 m/s. It is given an 
initial displacement of 0.2 sin πx/4 and 
an initial velocity of 20 sin πx/4. Find the 
solution representing the displacement of 
the string.

	6.20	 A 4-m-long stretched string with a = 20 m/s  
is fixed at each end.

	 (a)	� The string is started off by an initial 
displacement u(x, 0) = 0.2 sin πx/4. The 
initial velocity is zero. Determine the 
solution for u(x, t).

	 (b)	� Suppose that we wish to generate 
the same string vibration as in part (a) 
(a standing half-sine wave with the 
same amplitude), but we want to start 
with a zero-displacement, non-zero-
velocity condition. That is,  
u(x, 0) = 0, ∂u/∂t(x, 0) = g(x). What 
should g(x) be?

	 (c)	� For u(x, 0) = 0.1 sin πx/4 and ∂u/∂t(x, 0) = 
10 sin πx/4, what are the arbitrary con-
stants? What is the maximum displace-
ment value umax(x, t), and where does it 
occur?

	6.21	 Suppose that a tight string is subjected to the 
following conditions: u(0, t) = 0, u(L, t) = 0, 
∂u/∂t(x, 0) = 0, u(x, 0) = k. Calculate the first 
three nonzero terms of the solution u(x, t).

	6.22	 A string π m long is started into motion 
by giving the middle one-half an initial 
velocity of 20 m/s. The string is stretched 
until the wave speed is 60 m/s. Determine 
the resulting displacement of the string as a 
function of x and t.

	6.23	 The right end of a 6-m-long wire, which is 
stretched until the wave speed is 60 m/s, is 
continually moved with the displacement  
0.5 cos 4πt. What is the maximum amplitude 
of the resulting displacement?

	6.24	 The wind is blowing over some suspension 
cables on a bridge, causing a force that is 
approximated by the function 0.02 sin 21πt. 
Is resonance possible if the force in the cable 
is 40,000 N, the cable has a mass of 10 kg/m, 
and it is 15 m long?
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	6.25	 A circular shaft π m long is fixed at both 
ends. The middle of the shaft is twisted 
through an angle α, the remainder of the 
shaft through an angle proportional to the 
distance from the nearest end, and then the 
shaft is released from rest. Determine the 
subsequent motion expressed as θ(x, t). 
Problem 6.5 gives the appropriate wave 
equation.

	6.26	 Modify Eq. 6.5.9 to account for internal heat 
generation within the rod. The rate of heat 
generation is denoted ϕ (W/m 3 · s).

	6.27	 Allow the sides of a long, slender circular 
rod to transfer heat by convection. The 
convective rate of heat loss is given by 
Q = hA(T – Tf), where h (W/m 2 · s · °C) is 
the convection coefficient, A is the surface 
area, and Tf is the temperature of the 
surrounding fluid. Derive the describing 
partial differential equation. (Hint: Apply an 
energy balance to an elemental slice of the 
rod.)

	6.28	 The tip of a 2-m-long slender rod with 
lateral surface insulated is dipped into a hot 
liquid at 200°C. What differential equation 
would describe the temperature? After a 
long time, what would be the temperature 
distribution in the rod if the other end is 
held at 0°C? The lateral surfaces of the rod 
are insulated.

	6.29	 The conductivity K in the derivation of  
Eq. 6.3.10 was assumed constant. Let K be a 
function of x and let C and ρ be constants. 
Write the appropriate describing equation.

	6.30	 Write the one-dimensional heat equation that 
would be used to determine the temperature 
in a) a flat circular disk with the flat surfaces 
insulated, and b) in a sphere with initial 
temperature a function of r only.

	6.31	 Determine the steady-state temperature 
distribution in a) a flat circular disc with 
sides held at 100°C with the flat surfaces 
insulated, and b) a sphere with the outer 
surface held at 100°C.

	6.32	 The initial temperature in a 10-m-long iron 
rod is 300 sin πx/10, with both ends being 

held at zero temperature. Determine the 
times necessary for the midpoint of the rod 
to reach 200, 100, and 50, respectively. The 
material constant k = 1.7 × 10-5 m 2/s. The 
lateral surfaces are insulated.

	6.33	 A 1-m-long, 50-mm-diameter aluminum rod, 
with lateral surfaces insulated, is initially at 
a temperature of 200(1 + sin πx). Calculate 
the rate at which the rod is transferring heat 
at the left end initially and after 600 s if both 
ends are maintained at 200°C. For aluminum, 
K = 200 W/m · °C and k = 8.6 × 10-5 m 2/s. 
(Hint: Let θ(x, t) = T(x, t) – 200.)

	6.34	 The initial temperature distribution in a 
2-m-long brass bar is given by
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		  Both ends are maintained at zero temperature. 
Determine the solution for T(x, t). How long 
would you predict it would take for the center 
of the rod to reach a temperature of 10°C? 
The material constant k = 2.9 × 10-5 m 2/s. The 
lateral surfaces are insulated.

	6.35	 The initial temperature distribution in a 
2-m-long steel rod is given by
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		  The rod is completely insulated. Determine 
the temperature distribution in the rod and 
predict the temperature that the rod will 
eventually attain. k = 3.9 × 10-6 m 2/s.

	6.36	 A 2-m-long aluminum bar, with lateral 
surfaces insulated, is given the initial 
temperature distribution f (x) = 50 x 2. The left 
end of the bar is maintained at 0°C and the 
right end at 200°C. Determine the subsequent 
temperature distribution in the bar.  
k = 8.6 × 10-5 m 2/s.

	6.37	 The infinite slab of Fig. 6.17 is initially at 
temperature f (x). The face at x = 0 is held at 
T = 0°C. Determine the temperature T(x, t) of 
the slab for t > 0.
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	6.38	 The aluminum slab in Problem 6.37 is given 
the initial temperature distribution
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		  Estimate the rate of heat transfer per square 
meter from the left face at t = 10 4 s if  
k = 8.6 × 10 -5 m 2/s and K = 200 W/m · °C.

	6.39	 Heat generation occurs within a 4-m-long 
copper rod at the variable rate of  
2000(4x – x 2) W/m 3 · s. Both ends are 
maintained at 0°C. C = 380 J/kg · °C,  
ρ = 8940 kg/m 3, and k = 1.14 × 10 -4 m 2/s.

	 (a)	� Find the steady-state solution for the 
temperature distribution in the rod.

	 (b)	� Find the transient temperature distribu-
tion in the rod if the initial temperature 
was constant at 100°C. Just set up the 
integral for the Fourier coefficients; do 
not integrate.

	6.40	 Find the steady-state temperature 
distribution in a 1-m 2 slab if three sides are 
maintained at 0°C and the remaining side 
(at y = 1 m) is held at 100 sin πx °C. All other 
surfaces are insulated.

	6.41	 Three edges of a thin 1-m by 2-m plate are 
held at 0°C, while the fourth edge, at y = 1 m, 
is held at 100°C. All other surfaces are 
insulated. Determine an expression for the 
temperature distribution in the plate.

	6.42	 Find the steady-state temperature 
distribution in a 2 m-square slab if three sides 

are maintained at 100°C and the remaining 
side (at x = 2 m) is held at 200°C. The two flat 
surfaces are insulated.

	6.43	 The temperature of a spherical surface 0.2 m 
in diameter is maintained at a temperature of 
250°C. This surface is interior to a very large 
mass. Find an expression for the temperature 
distribution inside and outside the surface.

	6.44	 The temperature on the surface of a 
1-m-diameter sphere is 100 cos ϕ °C. What 
is the temperature distribution inside the 
sphere?

	6.45	 Find the potential field between two 
concentric spheres if the potential of the 
outer sphere is maintained at V = 100 and the 
potential of the inner sphere is maintained at 
zero. The radii are 2 m and 1 m, respectively.

	6.46	 A right circular cylinder is 1 m long and 2 m 
in diameter. Its left end and lateral surface 
are maintained at a temperature of 0°C and 
its right end at 100°C. Find an expression 
for its temperature at any interior point. 
Calculate the first three coefficients in the 
series expansion.

	6.47	 Determine the solution for the temperature 
as a function of r and t in a circular cylinder 
of radius r0 with insulated (or infinitely long) 
ends if the initial temperature distribution 
is a function f (r) of r only and the lateral 
surface is maintained at 0°C. See Eq. 6.5.14.

	6.48	 An aluminum circular cylinder 50 mm in 
diameter with ends insulated is initially at 
100°C. Approximate the temperature at the 
center of the cylinder after 2 s if the lateral 
surface is kept at 0°C. For aluminum,  
k = 8.6 × 10 -5 m 2/s.

	6.49	 A circular cylinder 1 m in radius is 
completely insulated and has an initial 
temperature distribution l00r °C. Find an 
expression for the temperature as a function 
of r and t. Write integral expressions for 
at least three coefficients in the series 
expansion.

	6.50	 Differentiate Eq. 6.9.8 and show that Eq. 6.9.9 
results. Also verify Eq. 6.9.10.
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